69 research outputs found

    High-throughput transcriptomics

    Get PDF
    High-throughput transcriptomics has revolutionised the field of transcriptome research by offering a cost-effective and powerful screening tool. Standard bulk RNA sequencing (RNA-Seq) enables characterisation of the average expression profiles for individual samples and facilitates identification of the molecular functions associated with genes differentially expressed across conditions. RNA-Seq can also be applied to disentangle splicing variants and discover novel transcripts, thus contributing to a comprehensive understanding of the transcriptome landscape. A closely related technique, single-cell RNA-Seq, has enabled the study of cell-type-specific gene expressions in hundreds to thousands of cells, aiding the exploration of cell heterogeneity. Nowadays, bulk RNA-Seq and single-cell RNA-Seq serve as complementary tools to advance and accelerate the development of transcriptome-based resources. This Collection illustrates how the current global research community makes use of these techniques to address a broad range of questions in life sciences. It demonstrates the usefulness and popularity of high-throughput transcriptomics and presents the best practices and potential issues for the benefit of future end-users

    Biotechnological and digital revolution for climate-smart plant breeding

    Get PDF
    Climate change, associated with global warming, extreme weather events, and increasing incidence of weeds, pests and pathogens, is strongly influencing major cropping systems. In this challenging scenario, miscellaneous strategies are needed to expedite the rate of genetic gains with the purpose of developing novel varieties. Large plant breeding populations, efficient high-throughput technologies, big data management tools, and downstream biotechnology and molecular techniques are the pillars on which next generation breeding is based. In this review, we describe the toolbox the breeder has to face the challenges imposed by climate change, remark on the key role bioinformatics plays in the analysis and interpretation of big “omics„ data, and acknowledge all the benefits that have been introduced into breeding strategies with the biotechnological and digital revolution

    Phyto-Friendly Soil Bacteria and Fungi Provide Beneficial Outcomes in the Host Plant by Differently Modulating Its Responses through (In)Direct Mechanisms

    Get PDF
    Sustainable agricultural systems based on the application of phyto-friendly bacteria and fungi are increasingly needed to preserve soil fertility and microbial biodiversity, as well as to reduce the use of chemical fertilizers and pesticides. Although there is considerable attention on the potential applications of microbial consortia as biofertilizers and biocontrol agents for crop management, knowledge on the molecular responses modulated in host plants because of these beneficial associations is still incomplete. This review provides an up-to-date overview of the different mechanisms of action triggered by plant-growth-promoting microorganisms (PGPMs) to promote host-plant growth and improve its defense system. In addition, we combined available gene-expression profiling data from tomato roots sampled in the early stages of interaction with Pseudomonas or Trichoderma strains to develop an integrated model that describes the common processes activated by both PGPMs and highlights the host’s different responses to the two microorganisms. All the information gathered will help define new strategies for the selection of crop varieties with a better ability to benefit from the elicitation of microbial inoculants

    Editorial: Genome wide association studies and genomic selection for crop improvement in the era of Big Data

    Get PDF
    The exploitation of the genetic diversity of crops is essential for breeding purposes, as the identification of useful/beneficial alleles for target traits within plant genetic resources allows the development of new varieties capable of responding to the challenges of global agriculture (Food and Agriculture Organization of the United Nations, 2010). Whole genome re-sequencing, genome skimming, fractional genome sequencing strategies, and high-density genotyping arrays enable large-scale assessment of genetic diversity for a wide range of species, including major and “orphan” crops (D’Agostino and Tripodi, 2017; Rasheed et al., 2017). This is however of limited value unless associated with adaptation and functional improvement of crops. Recently, several advances in high-throughput phenotyping have overcome the “phenotyping bottleneck” (Walter et al., 2015; Pieruschka and Schurr, 2019; Song et al., 2021), making available robust phenotypic data points acquired following the precise characterization of the agronomic and physiological attributes of crops. More and more studies are taking advantage of these scientific advances and of data science techniques to uncover the genome-to-phenome relationship and unlock the breeding potential of plant genetic resources. Genome-wide association studies (GWAS) and genomic selection (GS) are powerful data science approaches to investigate marker-trait associations (MTAs) for the basic understanding of simple and complex adaptive and functional traits (Liu and Yan, 2019; Voss-Fels et al., 2019; Varshney et al., 2021). Both approaches accelerate the rate of genetic gain in crops and reduce the breeding cycle in a cost-effective manner. For this Research Topic we sought high-quality contributions, covering various aspects of genomics-assisted-breeding: increase in yield, improvement of nutritional content and end-use quality of crops, climate-smart agriculture, cropping systems in agriculture. We did not miss to ask for contributions on technical challenges related to the design of GWAS and GS experiments and data analysis

    Genomic diversity and novel genome-wide association with fruit morphology in <i>Capsicum</i>, from 746k polymorphic sites

    Get PDF
    Capsicum is one of the major vegetable crops grown worldwide. Current subdivision in clades and species is based on morphological traits and coarse sets of genetic markers. Broad variability of fruits has been driven by breeding programs and has been mainly studied by linkage analysis. We discovered 746k variable sites by sequencing 1.8% of the genome in a collection of 373 accessions belonging to 11 Capsicum species from 51 countries. We describe genomic variation at population-level, confirm major subdivision in clades and species, and show that the known major subdivision of C. annuum separates large and bulky fruits from small ones. In C. annuum, we identify four novel loci associated with phenotypes determining the fruit shape, including a non-synonymous mutation in the gene Longifolia 1-like (CA03g16080). Our collection covers all the economically important species of Capsicum widely used in breeding programs and represent the widest and largest study so far in terms of the number of species and number of genetic variants analyzed. We identified a large set of markers that can be used for population genetic studies and genetic association analyses. Our results provide a comprehensive and precise perspective on genomic variability in Capsicum at population-level and suggest that future fine genetic association studies will yield useful results for breeding

    Intra- and Inter-Population Genetic Diversity of “Russello” and “Timilia” Landraces from Sicily: A Proxy towards the Identification of Favorable Alleles in Durum Wheat

    Get PDF
    Climate change and global population growth call for urgent recovery of genetic variation from underexploited or unexplored durum wheat (Triticum turgidum ssp. durum) landraces. Indeed, these untapped genetic resources can be a valuable source of favorable alleles for environmental adaptation and tolerance or resistance to (a)biotic stress. In southern Italy, in addition to the widespread modern and highly productive durum wheat cultivars, various landraces have been rediscovered and reused for their adaptation to sustainable and low-input cropping systems and for their peculiar qualitative characteristics. Sicily is a semiarid area rich in landraces, some of which are independently reproduced by many farmers. Among these, “Timilia” and “Russello” have been independently grown in various areas and are now cultivated, mostly under organic systems, for their hypothetical greater benefits and height, which give them a high level of competitiveness against weeds despite their low yield potential. So far, there is little information on the genetic variations of “Timilia” and “Russello” despite their putative origin from a common funder. This work aims to dissect the genetic variation patterns of two large germplasm collections of “Timilia” and “Russello” using SNP genotyping. The analysis of intra- and inter-population genetic variation and the identification of divergent loci between genetic groups showed that (i) there are two “Russello” genetic groups associated with different Sicilian geographical areas, which differ in important traits related to gluten quality and adaptation, and (ii) the individuals of “Timilia”, although presenting wide genetic variation, have undergone a conservative selection, likely associated with their distinctive traits. This work paves the way for a deeper exploration of the wide genetic diversity in Sicilian landraces, which could be conveniently exploited in future breeding programs, and points out that intra-population genetic diversity should be taken into account when ‘conservation varieties’ are to be registered in national registers of crop

    Cultivated Tomato (Solanum lycopersicum L.) Suffered a Severe Cytoplasmic Bottleneck during Domestication: Implications from Chloroplast Genomes

    Get PDF
    In various crops, genetic bottlenecks occurring through domestication can limit crop resilience to biotic and abiotic stresses. In the present study, we investigated nucleotide diversity in tomato chloroplast genome through sequencing seven plastomes of cultivated accessions from the Campania region (Southern Italy) and two wild species among the closest (Solanum pimpinellifolium) and most distantly related (S. neorickii) species to cultivated tomatoes. Comparative analyses among the chloroplast genomes sequenced in this work and those available in GenBank allowed evaluating the variability of plastomes and defining phylogenetic relationships. A dramatic reduction in genetic diversity was detected in cultivated tomatoes, nonetheless, a few de novo mutations, which still differentiated the cultivated tomatoes from the closest wild relative S. pimpinellifolium, were detected and are potentially utilizable as diagnostic markers. Phylogenetic analyses confirmed that S. pimpinellifolium is the closest ancestor of all cultivated tomatoes. Local accessions all clustered together and were strictly related with other cultivated tomatoes (S. lycopersicum group). Noteworthy, S. lycopersicum var. cerasiforme resulted in a mixture of both cultivated and wild tomato genotypes since one of the two analyzed accessions clustered with cultivated tomato, whereas the other with S. pimpinellifolium. Overall, our results revealed a very reduced cytoplasmic variability in cultivated tomatoes and suggest the occurrence of a cytoplasmic bottleneck during their domestication

    Almond diversity and homozygosity define structure, kinship, inbreeding, and linkage disequilibrium in cultivated germplasm, and reveal genomic associations with nut and seed weight

    Get PDF
    Almond [Prunus dulcis Miller (D.A. Webb)] is the main tree nut species worldwide. Here, genotyping-by-sequencing (GBS) was applied to 149 almond cultivars from the ex situ collections of the Italian Council for Agricultural Research (CREA) and the Spanish National Research Council (CSIC), leading to the detection of 93,119 single-nucleotide polymorphisms (SNPs). The study of population structure outlined four distinct genetic groups and highlighted diversification between the Mediterranean and Californian gene pools. Data on SNP diversity and runs of homozygosity (ROHs) allowed the definition of kinship, inbreeding, and linkage disequilibrium (LD) decay in almond cultivated germplasm. Four-year phenotypic observations, gathered on 98 cultivars of the CREA collection, were used to perform a genome-wide association study (GWAS) and, for the first time in a crop species, homozygosity mapping (HM), resulting in the identification of genomic associations with nut, shell, and seed weight. Both GWAS and HM suggested that loci controlling nut and seed weight are mostly independent. Overall, this study provides insights on the almond cultivation history and delivers information of major interest for almond genetics and breeding. In a broader perspective, our results encourage the use of ROHs in crop science to estimate inbreeding, choose parental combinations minimizing the risk of inbreeding depression, and identify genomic footprints of selection for specific traits

    A Robust DNA Isolation Protocol from Filtered Commercial Olive Oil for PCR-Based Fingerprinting

    Get PDF
    Extra virgin olive oil (EVOO) has elevated commercial value due to its health appeal, desirable characteristics and quantitatively limited production, and thus it has become an object of intentional adulteration. As EVOOs on the market might consist of a blend of olive varieties or sometimes even of a mixture of oils from different botanical species, an array of DNA-fingerprinting methods have been developed to check the varietal composition of the blend. Starting from a comparison between publicly available DNA extraction protocols, we set up a timely, low-cost, reproducible and effective DNA isolation protocol, which allows an adequate amount of DNA to be recovered even from commercial filtered EVOOs. Then, in order to verify the effectiveness of the DNA extraction protocol herein proposed, we applied PCR-based fingerprinting methods starting from the DNA extracted from three EVOO samples of unknown composition. In particular, genomic regions harboring nine simple sequence repeats (SSRs) and eight genotyping-by-sequencing-derived single nucleotide polymorphism (SNP) markers were amplified for authentication and traceability of the three EVOO samples. The whole investigation strategy herein described might favor producers in terms of higher revenues and consumers in terms of price transparency and food safety

    Genetic diversity and signature of divergence in the genome of grapevine clones of Southern Italy varieties

    Get PDF
    Sexual reproduction has contributed to a significant degree of variability in cultivated grapevine populations. However, the additional influence of spontaneous somatic mutations has played a pivotal role in shaping the diverse landscape of grapevine agrobiodiversity. These naturally occurring selections, termed 'clones,' represent a vast reservoir of potentially valuable traits and alleles that hold promise for enhancing grape quality and bolstering plant resilience against environmental and biotic challenges. Despite their potential, many of these clones remain largely untapped.In light of this context, this study aims to delve into the population structure, genetic diversity, and distinctive genetic loci within a collection of 138 clones derived from six Campanian and Apulian grapevine varieties, known for their desirable attributes in viticulture and winemaking. Employing two reduced representation sequencing methods, we extracted Single-Nucleotide Polymorphism (SNP) markers. Population structure analysis and fixation index (FST) calculations were conducted both between populations and at individual loci. Notably, varieties originating from the same geographical region exhibited pronounced genetic similarity.The resulting SNP dataset facilitated the identification of approximately two hundred loci featuring divergent markers (FST ≄ 0.80) within annotated exons. Several of these loci exhibited associations with essential traits like phenotypic adaptability and environmental responsiveness, offering compelling opportunities for grapevine breeding initiatives. By shedding light on the genetic variability inherent in these treasured traditional grapevines, our study contributes to the broader understanding of their potential. Importantly, it underscores the urgency of preserving and characterizing these valuable genetic resources to safeguard their intra-varietal diversity and foster future advancements in grapevine cultivation
    • 

    corecore