27 research outputs found

    Review article: A European perspective on wind and storm damage – from the meteorological background to index-based approaches to assess impacts

    Get PDF
    Wind and windstorms cause severe damage to natural and human-made environments. Thus, wind-related risk assessment is vital for the preparation and mitigation of calamities. However, the cascade of events leading to damage depends on many factors that are environment-specific and the available methods to address wind-related damage often require sophisticated analysis and specialization. Fortunately, simple indices and thresholds are as effective as complex mechanistic models for many applications. Nonetheless, the multitude of indices and thresholds available requires a careful selection process according to the target sector. Here, we first provide a basic background on wind and storm formation and characteristics, followed by a comprehensive collection of both indices and thresholds that can be used to predict the occurrence and magnitude of wind and storm damage. We focused on five key sectors: forests, urban areas, transport, agriculture and wind-based energy production. For each sector we described indices and thresholds relating to physical properties such as topography and land cover but also to economic aspects (e.g. disruptions in transportation or energy production). In the face of increased climatic variability, the promotion of more effective analysis of wind and storm damage could reduce the impact on society and the environment

    The extremely hot and dry 2018 summer in central and northern Europe from a multi-faceted weather and climate perspective

    Get PDF
    The summer of 2018 was an extraordinary season in climatological terms for northern and central Europe, bringing simultaneous, widespread, and concurrent heat and drought extremes in large parts of the continent with extensive impacts on agriculture, forests, water supply, and the socio-economic sector. Here, we present a comprehensive, multi-faceted analysis of the 2018 extreme summer in terms of heat and drought in central and northern Europe, with a particular focus on Germany. The heatwave first affected Scandinavia in mid-July and shifted towards central Europe in late July, while Iberia was primarily affected in early August. The atmospheric circulation was characterized by strongly positive blocking anomalies over Europe, in combination with a positive summer North Atlantic Oscillation and a double jet stream configuration before the initiation of the heatwave. In terms of possible precursors common to previous European heatwaves, the Eurasian double-jet structure and a tripolar sea surface temperature anomaly over the North Atlantic were already identified in spring. While in the early stages over Scandinavia the air masses at mid and upper levels were often of a remote, maritime origin, at later stages over Iberia the air masses primarily had a local-to-regional origin. The drought affected Germany the most, starting with warmer than average conditions in spring, associated with enhanced latent heat release that initiated a severe depletion of soil moisture. During summer, a continued precipitation deficit exacerbated the problem, leading to hydrological and agricultural drought. A probabilistic attribution assessment of the heatwave in Germany showed that such events of prolonged heat have become more likely due to anthropogenic global warming. Regarding future projections, an extreme summer such as that of 2018 is expected to occur every 2 out of 3 years in Europe in a +1.5 ∘C warmer world and virtually every single year in a +2 ∘C warmer world. With such large-scale and impactful extreme events becoming more frequent and intense under anthropogenic climate change, comprehensive and multi-faceted studies like the one presented here quantify the multitude of their effects and provide valuable information as a basis for adaptation and mitigation strategies

    Table_1_Copper mediates life history responses of Daphnia pulex to predation threat.DOCX

    No full text
    A key challenge for ecological and ecotoxicological risk assessment is to predict the risk of organisms when exposed simultaneously to multiple stressors in sub-lethal concentrations. Here, we assessed whether sub-lethal concentrations of an anthropogenic stressors, the heavy metal copper (Cu), mediates the impacts of a natural ecological threat to species, predation risk, among six distinct Daphnia pulex clones. We investigated the interaction between the two stressors on morphological defenses and on several life-history traits including maturation time, size at maturity, somatic growth rate and survival rates. Combining a life table experiment on a response surface design, we found no evidence that the heavy metal copper mediates the effects of predator cue induced morphological responses in the tested D. pulex clones. However, our data indicate that copper can mediate several key life-history responses to predation risk. For age at maturity, we found also clear evidence that the observed interaction between predation risk and copper varied by whether clones were strong or weak morphological responders. Specific exploration of the relationship between morphological responses and life history traits under predation risk and copper suggest a strong hypothesis for multiple strategies to deal with multiple stressors. While interactions between different stressors make it harder to predict their outcomes, and ultimately assess water quality regulations about the effects of such stressors, our study provides evidence that life history theory can aid in understanding and predicting their impacts.</p

    Image_3_Copper mediates life history responses of Daphnia pulex to predation threat.jpg

    No full text
    A key challenge for ecological and ecotoxicological risk assessment is to predict the risk of organisms when exposed simultaneously to multiple stressors in sub-lethal concentrations. Here, we assessed whether sub-lethal concentrations of an anthropogenic stressors, the heavy metal copper (Cu), mediates the impacts of a natural ecological threat to species, predation risk, among six distinct Daphnia pulex clones. We investigated the interaction between the two stressors on morphological defenses and on several life-history traits including maturation time, size at maturity, somatic growth rate and survival rates. Combining a life table experiment on a response surface design, we found no evidence that the heavy metal copper mediates the effects of predator cue induced morphological responses in the tested D. pulex clones. However, our data indicate that copper can mediate several key life-history responses to predation risk. For age at maturity, we found also clear evidence that the observed interaction between predation risk and copper varied by whether clones were strong or weak morphological responders. Specific exploration of the relationship between morphological responses and life history traits under predation risk and copper suggest a strong hypothesis for multiple strategies to deal with multiple stressors. While interactions between different stressors make it harder to predict their outcomes, and ultimately assess water quality regulations about the effects of such stressors, our study provides evidence that life history theory can aid in understanding and predicting their impacts.</p

    Image_5_Copper mediates life history responses of Daphnia pulex to predation threat.jpg

    No full text
    A key challenge for ecological and ecotoxicological risk assessment is to predict the risk of organisms when exposed simultaneously to multiple stressors in sub-lethal concentrations. Here, we assessed whether sub-lethal concentrations of an anthropogenic stressors, the heavy metal copper (Cu), mediates the impacts of a natural ecological threat to species, predation risk, among six distinct Daphnia pulex clones. We investigated the interaction between the two stressors on morphological defenses and on several life-history traits including maturation time, size at maturity, somatic growth rate and survival rates. Combining a life table experiment on a response surface design, we found no evidence that the heavy metal copper mediates the effects of predator cue induced morphological responses in the tested D. pulex clones. However, our data indicate that copper can mediate several key life-history responses to predation risk. For age at maturity, we found also clear evidence that the observed interaction between predation risk and copper varied by whether clones were strong or weak morphological responders. Specific exploration of the relationship between morphological responses and life history traits under predation risk and copper suggest a strong hypothesis for multiple strategies to deal with multiple stressors. While interactions between different stressors make it harder to predict their outcomes, and ultimately assess water quality regulations about the effects of such stressors, our study provides evidence that life history theory can aid in understanding and predicting their impacts.</p

    Table_2_Copper mediates life history responses of Daphnia pulex to predation threat.DOCX

    Get PDF
    A key challenge for ecological and ecotoxicological risk assessment is to predict the risk of organisms when exposed simultaneously to multiple stressors in sub-lethal concentrations. Here, we assessed whether sub-lethal concentrations of an anthropogenic stressors, the heavy metal copper (Cu), mediates the impacts of a natural ecological threat to species, predation risk, among six distinct Daphnia pulex clones. We investigated the interaction between the two stressors on morphological defenses and on several life-history traits including maturation time, size at maturity, somatic growth rate and survival rates. Combining a life table experiment on a response surface design, we found no evidence that the heavy metal copper mediates the effects of predator cue induced morphological responses in the tested D. pulex clones. However, our data indicate that copper can mediate several key life-history responses to predation risk. For age at maturity, we found also clear evidence that the observed interaction between predation risk and copper varied by whether clones were strong or weak morphological responders. Specific exploration of the relationship between morphological responses and life history traits under predation risk and copper suggest a strong hypothesis for multiple strategies to deal with multiple stressors. While interactions between different stressors make it harder to predict their outcomes, and ultimately assess water quality regulations about the effects of such stressors, our study provides evidence that life history theory can aid in understanding and predicting their impacts.</p

    Image_4_Copper mediates life history responses of Daphnia pulex to predation threat.jpg

    No full text
    A key challenge for ecological and ecotoxicological risk assessment is to predict the risk of organisms when exposed simultaneously to multiple stressors in sub-lethal concentrations. Here, we assessed whether sub-lethal concentrations of an anthropogenic stressors, the heavy metal copper (Cu), mediates the impacts of a natural ecological threat to species, predation risk, among six distinct Daphnia pulex clones. We investigated the interaction between the two stressors on morphological defenses and on several life-history traits including maturation time, size at maturity, somatic growth rate and survival rates. Combining a life table experiment on a response surface design, we found no evidence that the heavy metal copper mediates the effects of predator cue induced morphological responses in the tested D. pulex clones. However, our data indicate that copper can mediate several key life-history responses to predation risk. For age at maturity, we found also clear evidence that the observed interaction between predation risk and copper varied by whether clones were strong or weak morphological responders. Specific exploration of the relationship between morphological responses and life history traits under predation risk and copper suggest a strong hypothesis for multiple strategies to deal with multiple stressors. While interactions between different stressors make it harder to predict their outcomes, and ultimately assess water quality regulations about the effects of such stressors, our study provides evidence that life history theory can aid in understanding and predicting their impacts.</p

    Image_6_Copper mediates life history responses of Daphnia pulex to predation threat.jpg

    No full text
    A key challenge for ecological and ecotoxicological risk assessment is to predict the risk of organisms when exposed simultaneously to multiple stressors in sub-lethal concentrations. Here, we assessed whether sub-lethal concentrations of an anthropogenic stressors, the heavy metal copper (Cu), mediates the impacts of a natural ecological threat to species, predation risk, among six distinct Daphnia pulex clones. We investigated the interaction between the two stressors on morphological defenses and on several life-history traits including maturation time, size at maturity, somatic growth rate and survival rates. Combining a life table experiment on a response surface design, we found no evidence that the heavy metal copper mediates the effects of predator cue induced morphological responses in the tested D. pulex clones. However, our data indicate that copper can mediate several key life-history responses to predation risk. For age at maturity, we found also clear evidence that the observed interaction between predation risk and copper varied by whether clones were strong or weak morphological responders. Specific exploration of the relationship between morphological responses and life history traits under predation risk and copper suggest a strong hypothesis for multiple strategies to deal with multiple stressors. While interactions between different stressors make it harder to predict their outcomes, and ultimately assess water quality regulations about the effects of such stressors, our study provides evidence that life history theory can aid in understanding and predicting their impacts.</p

    Image_1_Copper mediates life history responses of Daphnia pulex to predation threat.jpg

    No full text
    A key challenge for ecological and ecotoxicological risk assessment is to predict the risk of organisms when exposed simultaneously to multiple stressors in sub-lethal concentrations. Here, we assessed whether sub-lethal concentrations of an anthropogenic stressors, the heavy metal copper (Cu), mediates the impacts of a natural ecological threat to species, predation risk, among six distinct Daphnia pulex clones. We investigated the interaction between the two stressors on morphological defenses and on several life-history traits including maturation time, size at maturity, somatic growth rate and survival rates. Combining a life table experiment on a response surface design, we found no evidence that the heavy metal copper mediates the effects of predator cue induced morphological responses in the tested D. pulex clones. However, our data indicate that copper can mediate several key life-history responses to predation risk. For age at maturity, we found also clear evidence that the observed interaction between predation risk and copper varied by whether clones were strong or weak morphological responders. Specific exploration of the relationship between morphological responses and life history traits under predation risk and copper suggest a strong hypothesis for multiple strategies to deal with multiple stressors. While interactions between different stressors make it harder to predict their outcomes, and ultimately assess water quality regulations about the effects of such stressors, our study provides evidence that life history theory can aid in understanding and predicting their impacts.</p
    corecore