231 research outputs found

    Leaf colour as a signal of chemical defence to insect herbivores in wild cabbage (Brassica Oleracea)

    Get PDF
    Leaf colour has been proposed to signal levels of host defence to insect herbivores, but we lack data on herbivory, leaf colour and levels of defence for wild host populations necessary to test this hypothesis. Such a test requires measurements of leaf spectra as they would be sensed by herbivore visual systems, as well as simultaneous measurements of chemical defences and herbivore responses to leaf colour in natural host-herbivore populations. In a large-scale field survey of wild cabbage (Brassica oleracea) populations, we show that variation in leaf colour and brightness, measured according to herbivore spectral sensitivities, predicts both levels of chemical defences (glucosinolates) and abundance of specialist lepidopteran (Pieris rapae) and hemipteran (Brevicoryne brassicae) herbivores. In subsequent experiments, P. rapae larvae achieved faster growth and greater pupal mass when feeding on plants with bluer leaves, which contained lower levels of aliphatic glucosinolates. Glucosinolate-mediated effects on larval performance may thus contribute to the association between P. rapae herbivory and leaf colour observed in the field. However, preference tests found no evidence that adult butterflies selected host plants based on leaf coloration. In the field, B. brassicae abundance varied with leaf brightness but greenhouse experiments were unable to identify any effects of brightness on aphid preference or performance. Our findings suggest that although leaf colour reflects both levels of host defences and herbivore abundance in the field, the ability of herbivores to respond to colour signals may be limited, even in species where performance is correlated with leaf colour

    RNA recognition by human TLR8 can lead to autoimmune inflammation.

    Get PDF
    Studies on the role of the RNA receptor TLR8 in inflammation have been limited by its different function in human versus rodents. We have generated multiple lines of transgenic mice expressing different levels of human TLR8. The high copy number chimeras were unable to pass germline; developed severe inflammation targeting the pancreas, salivary glands, and joints; and the severity of the specific phenotypes closely correlated with the huTLR8 expression levels. Mice with relatively low expression levels survived and bred successfully but had increased susceptibility to collagen-induced arthritis, and the levels of huTLR8 correlated with proinflammatory cytokines in the joints of the animals. At the cellular level, huTLR8 signaling exerted a DC-intrinsic effect leading to up-regulation of co-stimulatory molecules and subsequent T cell activation. A pathogenic role for TLR8 in human diseases was suggested by its increased expression in patients with systemic arthritis and the correlation of TLR8 expression with the elevation of IL-1β levels and disease status. We found that the consequence of self-recognition via TLR8 results in a constellation of diseases, strikingly distinct from those related to TLR7 signaling, and points to specific inflammatory diseases that may benefit from inhibition of TLR8 in humans

    α-Synuclein in human cerebrospinal fluid is principally derived from neurons of the central nervous system

    Get PDF
    The source of Parkinson disease-linked α-synuclein (aSyn) in human cerebrospinal fluid (CSF) remains unknown. We decided to measure the concentration of aSyn and its gradient in human CSF specimens and compared it with serum to explore its origin. We correlated aSyn concentrations in CSF versus serum (QaSyn) to the albumin quotient (Qalbumin) to evaluate its relation to blood–CSF barrier function. We also compared aSyn with several other CSF constituents of either central or peripheral sources (or both) including albumin, neuron-specific enolase, β-trace protein and total protein content. Finally, we examined whether aSyn is present within the structures of the choroid plexus (CP). We observed that QaSyn did not rise or fall with Qalbumin values, a relative measure of blood–CSF barrier integrity. In our CSF gradient analyses, aSyn levels decreased slightly from rostral to caudal fractions, in parallel to the recorded changes for neuron-specific enolase; the opposite trend was recorded for total protein, albumin and β-trace protein. The latter showed higher concentrations in caudal CSF fractions due to the diffusion-mediated transfer of proteins from blood and leptomeninges into CSF in the lower regions of the spine. In postmortem sections of human brain, we detected highly variable aSyn reactivity within the epithelial cell layer of CP in patients diagnosed with a range of neurological diseases; however, in sections of mice that express only human SNCA alleles (and in those without any Snca gene expression), we detected no aSyn signal in the epithelial cells of the CP. We conclude from these complementary results that despite its higher levels in peripheral blood products, neurons of the brain and spinal cord represent the principal source of aSyn in human CSF

    Electron population dynamics in resonant non-linear x-ray absorption in nickel at a free-electron laser

    Get PDF
    Free-electron lasers provide bright, ultrashort, and monochromatic x-ray pulses, enabling novel spectroscopic measurements not only with femtosecond temporal resolution: The high fluence of their x-ray pulses can also easily enter the regime of the non-linear x-ray–matter interaction. Entering this regime necessitates a rigorous analysis and reliable prediction of the relevant non-linear processes for future experiment designs. Here, we show non-linear changes in the L3-edge absorption of metallic nickel thin films, measured with fluences up to 60 J/cm2. We present a simple but predictive rate model that quantitatively describes spectral changes based on the evolution of electronic populations within the pulse duration. Despite its simplicity, the model reaches good agreement with experimental results over more than three orders of magnitude in fluence, while providing a straightforward understanding of the interplay of physical processes driving the non-linear changes. Our findings provide important insights for the design and evaluation of future high-fluence free-electron laser experiments and contribute to the understanding of non-linear electron dynamics in x-ray absorption processes in solids at the femtosecond timescale
    corecore