6 research outputs found

    A note on a non-parametric tail dependence estimator

    Get PDF
    We present a non-parametric tail dependence estimator which arises naturally from a specific regression model. Above that, this tail dependence estimator also results from a specific copula mixture. --Upper tail dependence,nonparametric estimation,copula

    Stream diatom community assembly processes in islands and continents: a global perspective

    Get PDF
    [EN] Understanding the roles of deterministic and stochastic processes in community assembly is essential for gaining insights into the biogeographical patterns of biodiversity. However, the way community assembly processes operate is still not fully understood, especially in oceanic islands. In this study, we examine the importance of assembly processes in shaping diatom communities in islands and continents, while also investigating the influence of climate and local water chemistry variables on species distributions. Location Global. Taxon Stream benthic diatoms. Methods We used diatom datasets from five continents and 19 islands and applied beta diversity analyses with a null model approach and hierarchical joint species distribution modelling. To facilitate comparisons with continents, we used continental area equivalents (CAEs), which represent continental subsets with comparable areas and the same number of study sites as their corresponding islands counterparts. Results We found that homogeneous selection (i.e., communities being more similar than the random expectation) was the dominant assembly process within islands whereas stochastic processes tended to be more important within continents. In addition, assembly processes were influenced by study scale and island isolation. Climatic variables showed a greater influence on species distribution than local factors. However, in islands, local environmental variables had a greater impact on the distributions of unique taxa as opposed to non-unique taxa. Main Conclusions We observed that the assembly processes of diatom communities were complex and influenced by a combination of deterministic and stochastic forces, which varied across spatial scales. In islands, there was no universal pattern of assembly processes, given that their influence depends on abiotic conditions such as area, isolation, and environmental heterogeneity. In addition, the sensitivity of species occurring uniquely in islands to local environmental variables suggests that they are perhaps less vulnerable to climatic changes but may be more influenced by changes in local physicochemistrySIFor financial support, the authors thank the Academy of Finland (grant nr. 346812 to JS); the Institut Francais de Finlande; the Embassy of France to Finland; the French Ministry of Education and Higher Education; Finnish Society of Sciences and Letters. J.J. Wang was further supported by the National Natural Science Foundation of China (91851117, 41871048), CAS Key Research Program of Frontier Sciences (QYZDB-SSW-DQC043), and The National Key Research and Development Program of China (2019YFA0607100

    How can integrated morphotaxonomy- and metabarcoding-based diatom assemblage analyses best contribute to the ecological assessment of streams?

    No full text
    International audienceEnvironmental conditions, such as nutrient concentrations, salinity, elevation etc., shape diatom assemblages of periphytic biofilms. These assemblages respond rapidly to environmental changes, a fact which makes diatoms valuable bioindicators. Hence, freshwater biomonitoring programmes currently use diatom indices (e.g. EU Water Framework Directive - WFD). To date, microscopy-based assessments require high taxonomic expertise for diatom identification at the species level. High-throughput technologies now provide cost-effective identification approaches that are promising, complementary or alternative tools for bioassessment. The suitability of the metabarcoding method is evaluated for the first time in the Cyprus streams WFD monitoring network, an eastern Mediterranean country with many endemic species and results are compared to the results acquired from the morphotaxonomic analysis. Morphotaxonomic identification was conducted microscopically, using the most updated taxonomic concepts, literature and online resources. At the same time, DNA metabarcoding involved the use of the rbc L 312 bp barcode, high-throughput sequencing and bioinformatic analysis. The ecological status was calculated using the IPS Index. Results show a positive correlation between morpho-taxonomic and molecular IPS scores. Discrepancies between the two methodologies are related to the limitations of both techniques. This study confirmed that Fistulifera saprophila can have a crucial role in key differences observed, as it negatively influences IPS scores and microscopy methods frequently overlook it. Importantly, gaps in the DNA barcoding reference databases lead to a positive overestimation in IPS scores. Overall, we conclude that DNA metabarcoding offsets the morphotaxonomic methodology for the ecological quality assessment of freshwaters

    Deriving business processes with service level agreements from early requirements

    Get PDF
    When designing a service-based business process employing loosely coupled services, one is not only interested in guaranteeing a certain flow of work, but also in how the work will be performed. This involves the consideration of non-functional properties which go from execution time and costs, to trust and security. Ideally, a designer would like to have guarantees over the behavior of the services involved in the process. These guarantees are the object of Service Level Agreements. We propose a methodology to design service-based business processes together with Service Level Agreements that guarantee a certain quality of execution, with particular emphasis on security. Starting from an early requirements analysis modeled in the Secure Tropos formalism, we provide a set of user-guided transformations and reasoning tools the final output of which is a set of processes in the form of Secure BPELs together with a set of Service Level Agreements to be signed by participating services. To show the potential impact of the approach, we illustrate the functioning of the methodology on a collaborative procurement scenario derived from the application domain of a research project.

    Morphotaxonomy- and metabarcoding-based ecological assessment of Cyprus streams’ diatom communities and correlation with environmental and anthropogenic influences

    No full text
    In freshwater ecosystems, periphytic biofilms include diatom assemblages that depend on environmental conditions (e.g., nutrient concentrations, salinity, temperature etc.). These assemblages respond rapidly to environmental changes, which makes diatoms valuable bioindicators. For this reason, they are currently used in freshwater biomonitoring programs (e.g., EU Water Framework Directive - WFD) (Foster et al., 2000). To date, diatom taxonomic identification is based on morphological criteria, which requires high taxonomic expertise to identify them to the species level needed for biomonitoring. Having this in mind, new strategies have been examined for the development of high-throughput, non-biased identification approaches. Human activities are the leading cause of environmental impairments and appropriate biomonitoring of ecosystems is needed to effectively assess the impact of their activities. In the last ten years, DNA metabarcoding combined with next-generation sequencing and bioinformatics, have been proposed as a complementary approach to morphological identification. In the past ten years, DNA metabarcoding coupled with next-generation sequencing and bioinformatics represents a complementary approach for diatom biomonitoring (Vasselon et al., 2019). In this study, this approach was used for the first time in Cyprus considering the association of environmental and anthropogenic pressures to diatom assemblages using the rbcL 312 bp barcode, next-generation sequencing (MiSeq Illumina), and bioinformatic evaluation (Mothur Software). Statistical analysis was then applied to identify the environmental (i.e., river types, geo-morphological) and anthropogenic (i.e., physical, chemical, human land-use pressures) variables' role in the observed diatom diversity. The Indice de PolluosensibilitĂ© SpĂ©cifique (IPS) index was used as it was shown to better respond to pressures that affect water quality in Cyprus rivers (WDD, 2014). Results indicate differences in diatom assemblages between intermittent and perennial rivers. Achnanthidium minutissimum was more abundant in intermittent rivers; whereas Amphora pediculus and Planothidium victorii (P. caputium) in perennial ones. Furthermore, we could demonstrate the correlation between nutrients (e.g., nitrogen, phosphorus), characteristics of the individual sampling sites (e.g., elevation), and land use activities on the observed differences in diatom diversity (Pissaridou, 2021). Additionally, results were compared to the morphotaxonomy-based approach which was conducted microscopically. Results show a positive correlation between morphological and molecular IPS scores. Points deviating from the norm are influenced by the limitations of both techniques. Fistulifera saprophila had a key role in this observation, as it negatively influences IPS scores. All in all, we conclude that DNA metabarcoding complements the morphological methodology for the ecological quality assessment of freshwaters in Cyprus. Multi-stressors and anthropogenic pressures have a significant statistical relationship to the observed diatom diversity and play a pivotal role in determining Cyprus' rivers' ecological status (Fig. 1).Foster, D., Wood, A., Griffiths, M., 2000. The Water Framework Directive (2000/60/EC) – An introduction Dave Foster – Policy Advisor (Europe), Aram Wood EP Scientist (Water), Dr Martin Griffiths – Head of Water Quality, Environment Agency, Head Office, Rio House, Waterside Drive, Aztec West, Almon 7–9.Pissaridou, P., Vasselon V., Christou A., Chonova T., Lacroix S., Papatheodoulou A., Drakou K., Tziortzis I., Dörflinger G., Rimet F., Bouchez A. and Vasquez MI. 2021 Deciphering Cyprus’ diatom diversity and the effects of environmental and anthropogenic influences for ecological assessment of rivers using DNA metabarcoding.Chemosphere (In Press)Vasselon, V., FrĂ©dĂ©ric, R., Isabelle, D., Olivier, M., Yorick, R., AgnĂšs, B., 2019. Assessing pollution of aquatic environments with diatoms’ DNA metabarcoding: Experience and developments from France Water Framework Directive networks. Metabarcoding and Metagenomics 3, 101–115. https://doi.org/10.3897/mbmg.3.39646WDD, 2014. Review and update of article 5 of Directive 2000/60/EC (Water reservoirs) & Classification of water status (Rivers, natural lakes and water reservoirs), That will establish baseline information and data for the 2nd cyprus river basin management plan

    Kant-Bibliographie 2009

    No full text
    corecore