15,046 research outputs found

    Tensorial perturbations in the bulk of inflating brane worlds

    Get PDF
    In this paper we consider the stability of some inflating brane-world models in quantum cosmology. It is shown that whereas the singular model based on the construction of inflating branes from Euclidean five-dimensional anti-de Sitter space is unstable to tensorial cosmological perturbations in the bulk, the nonsingular model which uses a five-dimensional asymptotically anti-de Sitter wormhole to construct the inflating branes is stable to these perturbations.Comment: 4 pages, RevTex, to appear in Phys. Rev.

    A highly-ionized absorber as a new explanation for the spectral changes during dips from X-ray binaries

    Full text link
    Until now, the spectral changes observed from persistent to dipping intervals in dipping low-mass X-ray binaries were explained by invoking progressive and partial covering of an extended emission region. Here, we propose a novel and simpler way to explain these spectral changes, which does not require any partial covering and hence any extended corona, and further has the advantage of explaining self-consistently the spectral changes both in the continuum and the narrow absorption lines that are now revealed by XMM-Newton. In 4U 1323-62, we detect Fe XXV and Fe XXVI absorption lines and model them for the first time by including a complete photo-ionized absorber model rather than individual Gaussian profiles. We demonstrate that the spectral changes both in the continuum and the lines can be simply modeled by variations in the properties of the ionized absorber. From persistent to dipping the photo-ionization parameter decreases while the equivalent hydrogen column density of the ionized absorber increases. In a recent work (see Diaz Trigo et al. in these proceedings), we show that our new approach can be successfully applied to all the other dipping sources that have been observed by XMM-Newton.Comment: 5 pages, 5 figures, to appear in the proceedings of "The X-ray Universe 2005", San Lorenzo de El Escorial (Spain), 26-30 September 200

    Statistical analysis of Ni nanowires breaking processes: a numerical simulation study

    Full text link
    A statistical analysis of the breaking behavior of Ni nanowires is presented. Using molecular dynamic simulations, we have determined the time evolution of both the nanowire atomic structure and its minimum cross section (Sm(t)). Accumulating thousands of independent breaking events, Sm histograms are built and used to study the influence of the temperature, the crystalline stretching direction and the initial nanowire size. The proportion of monomers, dimers and more complex structures at the latest stages of the breaking process are calculated, finding important differences among results obtained for different nanowire orientations and sizes. Three main cases have been observed. (A) [111] stretching direction and large nanowire sizes: the wire evolves from more complex structures to monomers and dimers prior its rupture; well ordered structures is presented during the breaking process. (B) Large nanowires stretched along the [100] and [110] directions: the system mainly breaks from complex structures (low probability of finding monomers and dimers), having disordered regions during their breakage; at room temperature, a huge histogram peak around Sm=5 appears, showing the presence of long staggered pentagonal Ni wires with ...-5-1-5-... structure. (C) Initial wire size is small: strong size effects independently on the temperature and stretching direction. Finally, the local structure around monomers and dimmers do not depend on the stretching direction. These configurations differ from those usually chosen in static studies of conductance.Comment: 18 pages, 13 figure
    • …
    corecore