16 research outputs found

    Deubiquitinating Enzymes in Coronaviruses and Possible Therapeutic Opportunities for COVID-19

    No full text
    Following the outbreak of novel severe acute respiratory syndrome (SARS)-coronavirus (CoV)2, the majority of nations are struggling with countermeasures to fight infection, prevent spread and improve patient survival. Considering that the pandemic is a recent event, no large clinical trials have been possible and since coronavirus specific drug are not yet available, there is no strong consensus on how to treat the coronavirus disease 2019 (COVID-19) associated viral pneumonia. Coronaviruses code for an important multifunctional enzyme named papain-like protease (PLP), that has many roles in pathogenesis. First, PLP is one of the two viral cysteine proteases, along with 3-chymotripsin-like protease, that is responsible for the production of the replicase proteins required for viral replication. Second, its intrinsic deubiquitinating and deISGylating activities serve to antagonize the hosts immune response that would otherwise hinder infection. Both deubiquitinating and deISGylating functions involve the removal of the small regulatory polypeptides, ubiquitin and ISG15, respectively, from target proteins. Ubiquitin modifications can regulate the innate immune response by affecting regulatory proteins, either by altering their stability via the ubiquitin proteasome pathway or by directly regulating their activity. ISG15 is a ubiquitin-like modifier with pleiotropic effects, typically expressed during the host cell immune response. PLP inhibitors have been evaluated during past coronavirus epidemics, and have showed promising results as an antiviral therapy in vitro. In this review, we recapitulate the roles of PLPs in coronavirus infections, report a list of PLP inhibitors and suggest possible therapeutic strategies for COVID-19 treatment, using both clinical and preclinical drugs.Funding agencies: The Department of Defense Ovarian Cancer Research Program GrantOC160377, the Minnesota Ovarian Cancer Alliance, the Randy Shaver Cancer Research Funds and the NIH grant1R01GM130800-01A1 to Martina Bazzaro. This work was supported by the Swedish Research Council to PadraigD’Arcy. This work was supported by Rotary Club Forlì to Valentino Clemente.</p

    Proteasome-associated deubiquitinases and cancer

    No full text
    Maintenance of protein homeostasis is a crucial process for the normal functioning of the cell. The regulated degradation of proteins is primarily facilitated by the ubiquitin proteasome system (UPS), a system of selective tagging of proteins with ubiquitin followed by proteasome-mediated proteolysis. The UPS is highly dynamic consisting of both ubiquitination and deubiquitination steps that modulate protein stabilization and degradation. Deregulation of protein stability is a common feature in the development and progression of numerous cancer types. Simultaneously, the elevated protein synthesis rate of cancer cells and consequential accumulation of misfolded proteins drives UPS addiction, thus sensitizing them to UPS inhibitors. This sensitivity along with the potential of stabilizing pro-apoptotic signaling pathways makes the proteasome an attractive clinical target for the development of novel therapies. Targeting of the catalytic 20S subunit of the proteasome is already a clinically validated strategy in multiple myeloma and other cancers. Spurred on by this success, promising novel inhibitors of the UPS have entered development, targeting the 20S as well as regulatory 19S subunit and inhibitors of deubiquitinating and ubiquitin ligase enzymes. In this review, we outline the manner in which deregulation of the UPS can cause cancer to develop, current clinical application of proteasome inhibitors, and the (pre-)clinical development of novel inhibitors of the UPS.Funding Agencies|Cancerfonden; Vetenskapsradet; Radiumhemmets forskningsfonder; Barncancerfonden; Knut and Alice Wallenberg Foundation; International Myeloma Foundation</p

    Identification of proteasome inhibitors using analysis of gene expression profiles

    No full text
    Inhibitors of the 20S proteasome such as bortezomib (Velcade((R))) and carfilzomib (Kypriolis((R))) are in clinical use for the treatment of patients with multiple myeloma and mantle cell lymphoma. In an attempt to identify novel inhibitors of the ubiquitin-proteasome system (UPS) we used the connectivity map (CMap) resource, based on alterations of gene expression profiles by perturbagens, and performed COMPARE analyses of drug sensitivity patterns in the NCI60 panel. Cmap analysis identified a large number of small molecules with strong connectivity to proteasome inhibition, including both well characterized inhibitors of the 20S proteasome and molecules previously not described to inhibit the UPS. A number of these compounds have been reported to be cytotoxic to tumor cells and were tested for their ability to decrease processing of proteasome substrates. The antibiotic thiostrepton and the natural products celastrol and curcumin induced strong accumulation of polyubiquitinated proteasome substrates in exposed cells. Other compounds elicited modest increases of proteasome substrates, including the protein phosphatase inhibitor BCI-Cl and the farnesyltransferase inhibitor manumycin A, suggesting that these compounds inhibit proteasome function. Induction of chaperone expression in the absence of proteasome inhibition was observed by a number of compounds, suggesting other effects on the UPS. We conclude that the combination of bioinformatic analyses and cellular assays resulted in the identification of compounds with potential to inhibit the UPS.Funding Agencies|CancerfondenSwedish Cancer Society; VetenskapsradetSwedish Research Council; Radiumhemmets forskningsfonder; Knut och Alice Wallenbergs StiftelseKnut &amp; Alice Wallenberg Foundation</p

    Synthesis and bio-properties of 4-piperidone containing compounds as curcumin mimics

    No full text
    The broad spectrum of curcumins beneficial properties has encouraged medicinal researchers to investigate its therapeutic efficacy against diverse diseases. The clinical potential of curcumin is, however limited due to its poor pharmacodynamic/pharmacokinetic properties (such as low solubility, pH instability, poor absorption in circulation, rapid elimination from the body and photochemical degradation). 3,5-Bis(ylidene)-4-piperidone scaffolds are considered a curcumin mimic that exhibit diverse bio-properties. The current review provides a brief overview of these mimics and highlights biological activities relevant to drug development.Funding Agencies|National Research Centre, Egypt [12060101]</p

    Inhibition of proteasome deubiquitinase activity: a strategy to overcome resistance to conventional proteasome inhibitors?

    No full text
    Although more traditionally associated with degradation and maintenance of protein homeostasis, the ubiquitin-proteasome system (UPS) has emerged as a critical component in the regulation of cancer cell growth and survival. The development of inhibitors that block the proteolytic activities of the proteasome have highlighted its suitability as a bona fide anti-cancer drug target. However, key determinants including the development of drug resistance and dose-limiting toxicity call for the identification of alternative components of the UPS for novel drug targeting. Recently the deubiquitinases (DUBS), a diverse family of enzymes that catalyze ubiquitin removal, have attracted significant interest as targets for the development of next generation UPS inhibitors. In particular, pharmacological inhibition of the proteasomal cysteine DUBs (i.e., USP14 and UCHL5) has been shown to be particularly cytotoxic to cancer cells and inhibit tumour growth in several in vivo models. In the current review we focus on the modes of action of proteasome DUB inhibitors and discus the potential of DUB inhibitors to circumvent acquired drug resistance and provide a therapeutic option for the treatment of cancer. (C) 2015 Elsevier Ltd. All rights reserved.Funding Agencies|Cancerfonden; Vetenskapsradet; Radiumhemmets forskningsfonder; Barncancerfonden; Mary Beves Foundation; Alex and Eva Wallstroms Foundation; Ake Olssons Foundation</p

    Oxidative Stress Induced by the Deubiquitinase Inhibitor b-AP15 Is Associated with Mitochondrial Impairment

    No full text
    Inhibitors of the 20S proteasome such as bortezomib are cytotoxic to tumor cells and have been proven to be valuable for the clinical management of multiple myeloma. The therapeutic efficacy of bortezomib is, however, hampered by the emergence of acquired resistance. Available data suggest that blocking proteasome activity at the level of proteasome-associated deubiquitinases (DUBs) provides a mechanism to overcome resistance to bortezomib and also to other cancer therapies. The small molecule b-AP15 is an inhibitor of proteasome-associated DUB activity that induces both proteotoxic stress and increases in the levels of reactive oxygen species (ROS) in tumor cells. Antioxidants have been shown to decrease apoptosis induction by b-AP15 and we here addressed the question of the mechanism of redox perturbation by this compound. We show that oxidative stress induction by b-AP15 is abrogated in cells deprived of mitochondrial DNA (rho(0) cells). We also show associations between the level of proteotoxic stress, the degree of mitochondrial dysfunction, and the extent of induction of hemeoxygenase-1 (HO-1), a target of the redox-regulated Nrf-2 transcription factor. Decreased expression of COX5b (cytochrome c oxidase subunit 5b) and TOMM34 (translocase of outer mitochondrial membrane 34) was observed in b-AP15-treated cells. These findings suggest a mitochondrial origin of the increased levels of ROS observed in cells exposed to the DUB inhibitor b-AP15.Funding Agencies|Swedish Cancer Society; Radiumhemmets Forskningsfonder; Vetenskapsradet; Knut och Alice Wallenbergs Stiftelse; Barncancerfonden</p

    Targeting Mitochondrial Function to Treat Quiescent Tumor Cells in Solid Tumors

    No full text
    The disorganized nature of tumor vasculature results in the generation of microenvironments characterized by nutrient starvation, hypoxia and accumulation of acidic metabolites. Tumor cell populations in such areas are often slowly proliferating and thus refractory to chemotherapeutical drugs that are dependent on an active cell cycle. There is an urgent need for alternative therapeutic interventions that circumvent growth dependency. The screening of drug libraries using multicellular tumor spheroids (MCTS) or glucose-starved tumor cells has led to the identification of several compounds with promising therapeutic potential and that display activity on quiescent tumor cells. Interestingly, a common theme of these drug screens is the recurrent identification of agents that affect mitochondrial function. Such data suggest that, contrary to the classical Warburg view, tumor cells in nutritionally-compromised microenvironments are dependent on mitochondrial function for energy metabolism and survival. These findings suggest that mitochondria may represent an Achilles heel for the survival of slowly-proliferating tumor cells and suggest strategies for the development of therapy to target these cell populations.Funding Agencies|Vetenskapsradet; Cancerfonden; Radiumhemmets forskningsfonder; Barncancerfonden</p

    MYC is downregulated by a mitochondrial checkpoint mechanism

    No full text
    The MYC proto-oncogene serves as a rheostat coupling mitogenic signaling with the activation of genes regulating growth, metabolism and mitochondrial biogenesis. Here we describe a novel link between mitochondria and MYC levels. Perturbation of mitochondrial function using a number of conventional and novel inhibitors resulted in the decreased expression of MYC mRNA. This decrease in MYC mRNA occurred concomitantly with an increase in the levels of tumor-suppressive miRNAs such as members of the let-7 family and miR-34a-5p. Knockdown of let-7 family or miR-34a-5p could partially restore MYC levels following mitochondria damage. We also identified let-7-dependent downregulation of the MYC mRNA chaperone, CRD-BP (coding region determinant-binding protein) as an additional control following mitochondria damage. Our data demonstrates the existence of a homeostasis mechanism whereby mitochondrial function controls MYC expression.Funding Agencies|Cancerfonden; Vetenskapsradet; Radiumhemmets forskningsfonder; Knut och Alice Wallenbergs Stiftelse; Barncancerfonden</p

    Repurposing of auranofin: Thioredoxin reductase remains a primary target of the drug

    No full text
    Auranofin is a gold (1)-containing compound used for the treatment of rheumatic arthritis. Auranofin has anticancer activity in animal models and is approved for clinical trials for lung and ovarian carcinomas. Both the cytosolic and mitochondrial forms of the selenoprotein thioredoxin reductase (TrxR) are well documented targets of auranofin. Auranofin was recently reported to also inhibit proteasome activity at the level of the proteasome-associated deubiquitinases (DUBs) UCHL5 and USP14. We here set out to re-examine the molecular mechanism underlying auranofin cytotoxicity towards cultured cancer cells. The effects of auranofin on the proteasome were examined in cells and in vitro, effects on DUB activity were assessed using different substrates. The cellular response to auranofin was compared to that of the 20S proteasome inhibitor bortezomib and the 19S DUB inhibitor b-AP15 using proteomics. Auranofin was found to inhibit mitochondrial activity and to an induce oxidative stress response at IC50 doses. At 2-3-fold higher doses, auranofin inhibits proteasome processing in cells. At such supra-pharmacological concentrations USP14 activity was inhibited. Analysis of protein expression profiles in drug-exposed tumor cells showed that auranofin induces a response distinct from that of the 20S proteasome inhibitor bortezomib and the DUB inhibitor b-AP15, both of which induced similar responses. Our results support the notion that the primary mechanism of action of auranofin is TrxR inhibition and suggest that proteasome DUB inhibition is an off-target effect. Whether proteasome inhibition will contribute to the antineoplastic effect of auranofin in treated patients is unclear but remains a possibility. (C) 2019 Elsevier B.V. and Societe Francaise de Biochimie et Biologie Moleculaire (SFBBM). All rights reserved.Funding Agencies|Swedish Cancer Society; Radiumhemmets Forskningsfonder; Vetenskapsradet; Barncancerfonden; Knut and Alice Wallenbergs Foundation</p

    Acute lymphoblastic leukemia cells are sensitive to disturbances in protein homeostasis induced by proteasome deubiquitinase inhibition

    No full text
    The non-genotoxic nature of proteasome inhibition makes it an attractive therapeutic option for the treatment of pediatric malignancies. We recently described the small molecule VLX1570 as an inhibitor of proteasome deubiquitinase (DUB) activity that induces proteotoxic stress and apoptosis in cancer cells. Here we show that acute lymphoblastic leukemia (ALL) cells are highly sensitive to treatment with VLX1570, resulting in the accumulation of polyubiquitinated proteasome substrates and loss of cell viability. VLX1570 treatment increased the levels of a number of proteins, including the chaperone HSP70B , the oxidative stress marker heme oxygenase-1 (HO-1) and the cell cycle regulator p21(Cip1). Unexpectedly, polybiquitin accumulation was found to be uncoupled from ER stress in ALL cells. Thus, increased phosphorylation of eIF2a occurred only at supra-pharmacological VLX1570 concentrations and did not correlate with polybiquitin accumulation. Total cellular protein synthesis was found to decrease in the absence of eIF2a phosphorylation. Furthermore, ISRIB (Integrated Stress Response inhibitor) did not overcome the inhibition of protein synthesis. We finally show that VLX1570 can be combined with L-asparaginase for additive or synergistic antiproliferative effects on ALL cells. We conclude that ALL cells are highly sensitive to the proteasome DUB inhibitor VLX1570 suggesting a novel therapeutic option for this disease
    corecore