4 research outputs found

    Host dependence of the electron affinity of molecular dopants

    Get PDF
    International audienceCharge carriers energetics is key in electron transfer processes such as those that enable the electrical doping of organic semiconductors. In this study, we take advantage of the quantitative accuracy of embedded GW calculations to perform a series of virtual experiments that allow measuring the electron affinity of p-type dopants in different host solids. Our calculations show that the energy levels of a molecular impurity strongly depend on the host environment as a result of electrostatic intermolecular interactions. In particular, the electron affinity of a dopant impurity in a given semiconductor is found to be up to 1 eV lower than that of the pure dopant crystal. This result questions the pertinence of the electron affinity measured for pure dopants in order to predict doping efficiency in a specific host. The role of the Coulomb electron-hole interaction for the dopant-to-semiconductor charge transfer and for the release of doping-induced charges is discussed

    Electronic Structure, Electron-Phonon Coupling and Charge Transport in Crystalline Rubrene Under Mechanical Strain

    No full text
    Motivated by the potential for application of organic semiconductors in exible electronics, we present a theoretical study aiming at elucidating the interplay between mechanical strain and electronic, vibrational and charge transport properties of the prototypical high-mobility molecular semiconductor rubrene. Our study considers several factors that can play a role in the electro-mechanical response of a soft, van-der-Waals bonded, molecular crystal, such as intermolecular charge transfer integrals, lattice dynamics and electron phonon coupling. We find that compressive strain leads to an increase in magnitude of charge transfer integrals but also of the energetic disorder hampering the mobility. Charge transport simulations, based on the transient localization framework and fed with first-principles inputs, reveal a remarkably different response to strain applied along different crystal axes, in line with most recent experiments. The critical interplay between energetic disorder of intrinsic and extrinsic nature on the mobility-strain relationship is also discussed. The theoretical approach proposed in this work paves the way for the systematic study of the electro-mechanical response of different classes of high-mobility molecular semiconductors. </div

    Accurate Prediction of the S1 Excitation Energy in Solvated Azobenzene Derivatives via Embedded Orbital-Tuned Bethe-Salpeter Calculations

    No full text
    By employing the Bethe-Salpeter formalism with a non-equilibrium embedding scheme, we demonstrate that the paradigmatic case of S1 band separation between cis and trans in azobenzene derivatives can be computed with excellent accuracy compared to experimental optical spectra. Besides embedding, we show that the choice of the Kohn-Sham exchange correlation functional for DFT is critical, despite the iterative convergence of GW quasiparticle energies. We address this by using a global hybrid functional, PBEh, with the amount of exact exchange fulfilling the Koopman’s theorem for DFT hence yielding an environment-consistent ionization potential.This method yields the first vertical excitation energy of 20 azo molecules with a mean absolute error as low as 0.06 eV, up to three times smaller compared to standard functionals such as M06-2X and PBE0, and five times smaller compared to recent TDDFT results.<br /

    Untangling the Fundamental Electronic Origins of Non-Local Electron-Phonon Coupling in Organic Semiconductors

    No full text
    Organic semiconductors with distinct molecular properties and large carrier mobilities are constantly developed in attempt to produce highly-efficient electronic materials. Recently, designer molecules with unique structural modifications have been expressly developed to suppress molecular motions in the solid state that arise from low-energy phonon modes, which uniquely limit carrier mobilities through electron-phonon coupling. However, such low-frequency vibrational dynamics often involve complex molecular dynamics, making comprehension of the underlying electronic origins of electron-phonon coupling difficult. In this work, we first generate a mode-resolved picture of electron-phonon coupling in a series of materials that were specifically designed to suppress detrimental vibrational effects. From this foundation, we develop a method based on the crystalline orbital Hamiltonian population analyses to resolve the origins -- down to the single atomic-orbital scale -- of surprisingly large electron-phonon coupling constants of particular vibrations, explicitly detailing the manner in which the intermolecular wavefunction overlap is perturbed. Overall, this approach provides a comprehensive explanation into the unexpected effects of less-commonly studied molecular vibrations, revealing new aspects of molecular design that should be considered for creating improved organic semiconducting materials
    corecore