1,901 research outputs found
From linear to non-linear scales: analytical and numerical predictions for the weak lensing convergence
Weak lensing convergence can be used directly to map and probe the dark mass
distribution in the universe. Building on earlier studies, we recall how the
statistics of the convergence field are related to the statistics of the
underlying mass distribution, in particular to the many-body density
correlations. We describe two model-independent approximations which provide
two simple methods to compute the probability distribution function, pdf, of
the convergence. We apply one of these to the case where the density field can
be described by a log-normal pdf. Next, we discuss two hierarchical models for
the high-order correlations which allow one to perform exact calculations and
evaluate the previous approximations in such specific cases. Finally, we apply
these methods to a very simple model for the evolution of the density field
from linear to highly non-linear scales. Comparisons with the results obtained
from numerical simulations, obtained from a number of different realizations,
show excellent agreement with our theoretical predictions. We have probed
various angular scales in the numerical work and considered sources at 14
different redshifts in each of two different cosmological scenarios, an open
cosmology and a flat cosmology with non-zero cosmological constant. Our
simulation technique employs computations of the full 3-d shear matrices along
the line of sight from the source redshift to the observer and is complementary
to more popular ray-tracing algorithms. Our results therefore provide a
valuable cross-check for such complementary simulation techniques, as well as
for our simple analytical model, from the linear to the highly non-linear
regime.Comment: 20 pages, final version published in MNRA
Planck 2013 results. XXII. Constraints on inflation
We analyse the implications of the Planck data for cosmic inflation. The Planck nominal mission temperature anisotropy measurements, combined with the WMAP large-angle polarization, constrain the scalar spectral index to be ns = 0:9603 _ 0:0073, ruling out exact scale invariance at over 5_: Planck establishes an upper bound on the tensor-to-scalar ratio of r < 0:11 (95% CL). The Planck data thus shrink the space of allowed standard inflationary models, preferring potentials with V00 < 0. Exponential potential models, the simplest hybrid inflationary models, and monomial potential models of degree n _ 2 do not provide a good fit to the data. Planck does not find statistically significant running of the scalar spectral index, obtaining dns=dln k = 0:0134 _ 0:0090. We verify these conclusions through a numerical analysis, which makes no slowroll approximation, and carry out a Bayesian parameter estimation and model-selection analysis for a number of inflationary models including monomial, natural, and hilltop potentials. For each model, we present the Planck constraints on the parameters of the potential and explore several possibilities for the post-inflationary entropy generation epoch, thus obtaining nontrivial data-driven constraints. We also present a direct reconstruction of the observable range of the inflaton potential. Unless a quartic term is allowed in the potential, we find results consistent with second-order slow-roll predictions. We also investigate whether the primordial power spectrum contains any features. We find that models with a parameterized oscillatory feature improve the fit by __2 e_ _ 10; however, Bayesian evidence does not prefer these models. We constrain several single-field inflation models with generalized Lagrangians by combining power spectrum data with Planck bounds on fNL. Planck constrains with unprecedented accuracy the amplitude and possible correlation (with the adiabatic mode) of non-decaying isocurvature fluctuations. The fractional primordial contributions of cold dark matter (CDM) isocurvature modes of the types expected in the curvaton and axion scenarios have upper bounds of 0.25% and 3.9% (95% CL), respectively. In models with arbitrarily correlated CDM or neutrino isocurvature modes, an anticorrelated isocurvature component can improve the _2 e_ by approximately 4 as a result of slightly lowering the theoretical prediction for the ` <_ 40 multipoles relative to the higher multipoles. Nonetheless, the data are consistent with adiabatic initial conditions
Scaling in Gravitational Clustering, 2D and 3D Dynamics
Perturbation Theory (PT) applied to a cosmological density field with
Gaussian initial fluctuations suggests a specific hierarchy for the correlation
functions when the variance is small. In particular quantitative predictions
have been made for the moments and the shape of the one-point probability
distribution function (PDF) of the top-hat smoothed density. In this paper we
perform a series of systematic checks of these predictions against N-body
computations both in 2D and 3D with a wide range of featureless power spectra.
In agreement with previous studies, we found that the reconstructed PDF-s work
remarkably well down to very low probabilities, even when the variance
approaches unity. Our results for 2D reproduce the features for the 3D
dynamics. In particular we found that the PT predictions are more accurate for
spectra with less power on small scales. The nonlinear regime has been explored
with various tools, PDF-s, moments and Void Probability Function (VPF). These
studies have been done with unprecedented dynamical range, especially for the
2D case, allowing in particular more robust determinations of the asymptotic
behaviour of the VPF. We have also introduced a new method to determine the
moments based on the factorial moments. Results using this method and taking
into account the finite volume effects are presented.Comment: 13 pages, Latex file, 9 Postscript Figure
Remote-scope Promotion: Clarified, Rectified, and Verified
Modern accelerator programming frameworks, such as OpenCL, organise threads into work-groups. Remote-scope promotion (RSP) is a language extension recently proposed by AMD researchers that is designed to enable applications, for the first time, both to optimise for the common case of intra-work-group communication (using memory scopes to provide consistency only within a work-group) and to allow occasional inter-work-group communication (as required, for instance, to support the popular load-balancing idiom of work stealing). We present the first formal, axiomatic memory model of OpenCL extended with RSP. We have extended the Herd memory model simulator with support for OpenCL kernels that exploit RSP, and used it to discover bugs in several litmus tests and a work-stealing queue, that have been used previously in the study of RSP. We have also formalised the proposed GPU implementation of RSP. The formalisation process allowed us to identify bugs in the description of RSP that could result in well-synchronised programs experiencing memory inconsistencies. We present and prove sound a new implementation of RSP that incorporates bug fixes and requires less non-standard hardware than the original implementation. This work, a collaboration between academia and industry, clearly demonstrates how, when designing hardware support for a new concurrent language feature, the early application of formal tools and techniques can help to prevent errors, such as those we have found, from making it into silicon
New approaches to probing Minkowski functionals
We generalize the concept of the ordinary skew-spectrum to probe the effect of non-Gaussianity
on the morphology of cosmic microwave background (CMB) maps in several domains: in
real space (where they are commonly known as cumulant-correlators), and in harmonic and
needlet bases. The essential aim is to retain more information than normally contained in these
statistics, in order to assist in determining the source of any measured non-Gaussianity, in the
same spirit as Munshi & Heavens skew-spectra were used to identify foreground contaminants
to the CMB bispectrum in Planck data. Using a perturbative series to construct the Minkowski
functionals (MFs), we provide a pseudo-C based approach in both harmonic and needlet
representations to estimate these spectra in the presence of a mask and inhomogeneous noise.
Assuming homogeneous noise, we present approximate expressions for error covariance for
the purpose of joint estimation of these spectra. We present specific results for four different
models of primordial non-Gaussianity local, equilateral, orthogonal and enfolded models, as
well as non-Gaussianity caused by unsubtracted point sources. Closed form results of nextorder
corrections to MFs too are obtained in terms of a quadruplet of kurt-spectra. We also
use the method of modal decomposition of the bispectrum and trispectrum to reconstruct the
MFs as an alternative method of reconstruction of morphological properties of CMB maps.
Finally, we introduce the odd-parity skew-spectra to probe the odd-parity bispectrum and its
impact on the morphology of the CMB sky. Although developed for the CMB, the generic
results obtained here can be useful in other areas of cosmology
Recommended from our members
Planck 2015 results. XI. CMB power spectra, likelihoods, and robustness of parameters
This paper presents the Planck 2015 likelihoods, statistical descriptions of the 2-point correlations of CMB data, using the hybrid approach employed previously: pixel-based at ℓ<30 and a Gaussian approximation to the distribution of spectra at higher ℓ . The main improvements are the use of more and better processed data and of Planck polarization data, and more detailed foreground and instrumental models, allowing further checks and enhanced immunity to systematics. Progress in foreground modelling enables a larger sky fraction. Improvements in processing and instrumental models further reduce uncertainties. For temperature, we perform an analysis of end-to-end instrumental simulations fed into the data processing pipeline; this does not reveal biases from residual instrumental systematics. The Λ CDM cosmological model continues to offer a very good fit to Planck data. The slope of primordial scalar fluctuations, n s , is confirmed smaller than unity at more than 5{\sigma} from Planck alone. We further validate robustness against specific extensions to the baseline cosmology. E.g., the effective number of neutrino species remains compatible with the canonical value of 3.046. This first detailed analysis of Planck polarization concentrates on E modes. At low ℓ we use temperature at all frequencies and a subset of polarization. The frequency range improves CMB-foreground separation. Within the baseline model this requires a reionization optical depth τ=0.078±0.019 , significantly lower than without high-frequency data for explicit dust monitoring. At high ℓ we detect residual errors in E, typically O(μ K 2 ); we recommend temperature alone as the high-ℓ baseline. Nevertheless, Planck high-ℓ polarization allows a separate determination of Λ CDM parameters consistent with those from temperature alone
CMB Constraints on Primordial non-Gaussianity from the Bispectrum (f_{NL}) and Trispectrum (g_{NL} and \tau_{NL}) and a New Consistency Test of Single-Field Inflation
We outline the expected constraints on non-Gaussianity from the cosmic
microwave background (CMB) with current and future experiments, focusing on
both the third (f_{NL}) and fourth-order (g_{NL} and \tau_{NL}) amplitudes of
the local configuration or non-Gaussianity. The experimental focus is the
skewness (two-to-one) and kurtosis (two-to-two and three-to-one) power spectra
from weighted maps. In adition to a measurement of \tau_{NL} and g_{NL} with
WMAP 5-year data, our study provides the first forecasts for future constraints
on g_{NL}. We describe how these statistics can be corrected for the mask and
cut-sky through a window function, bypassing the need to compute linear terms
that were introduced for the previous-generation non-Gaussianity statistics,
such as the skewness estimator. We discus the ratio A_{NL} =
\tau_{NL}/(6f_{NL}/5)^2 as an additional test of single-field inflationary
models and discuss the physical significance of each statistic. Using these
estimators with WMAP 5-Year V+W-band data out to l_{max}=600 we constrain the
cubic order non-Gaussianity parameters \tau_{NL}, and g_{NL} and find -7.4 <
g_{NL}/10^5 < 8.2 and -0.6 < \tau_{NL}/10^4 < 3.3 improving the previous
COBE-based limit on \tau_{NL} < 10^8 nearly four orders of magnitude with WMAP.Comment: 15 pages. 14 figure
Recommended from our members
Planck 2015 results. XIII. Cosmological parameters
We present results based on full-mission Planck observations of temperature and polarization anisotropies of the CMB. These data are consistent with the six-parameter inflationary LCDM cosmology. From the Planck temperature and lensing data, for this cosmology we find a Hubble constant, H0= (67.8 +/- 0.9) km/s/Mpc, a matter density parameter Omega_m = 0.308 +/- 0.012 and a scalar spectral index with n_s = 0.968 +/- 0.006. (We quote 68% errors on measured parameters and 95% limits on other parameters.) Combined with Planck temperature and lensing data, Planck LFI polarization measurements lead to a reionization optical depth of tau = 0.066 +/- 0.016. Combining Planck with other astrophysical data we find N_ eff = 3.15 +/- 0.23 for the effective number of relativistic degrees of freedom and the sum of neutrino masses is constrained to < 0.23 eV. Spatial curvature is found to be |Omega_K| < 0.005. For LCDM we find a limit on the tensor-to-scalar ratio of r <0.11 consistent with the B-mode constraints from an analysis of BICEP2, Keck Array, and Planck (BKP) data. Adding the BKP data leads to a tighter constraint of r < 0.09. We find no evidence for isocurvature perturbations or cosmic defects. The equation of state of dark energy is constrained to w = -1.006 +/- 0.045. Standard big bang nucleosynthesis predictions for the Planck LCDM cosmology are in excellent agreement with observations. We investigate annihilating dark matter and deviations from standard recombination, finding no evidence for new physics. The Planck results for base LCDM are in agreement with BAO data and with the JLA SNe sample. However the amplitude of the fluctuations is found to be higher than inferred from rich cluster counts and weak gravitational lensing. Apart from these tensions, the base LCDM cosmology provides an excellent description of the Planck CMB observations and many other astrophysical data sets
Recommended from our members
Planck 2015 results. XIV. Dark energy and modified gravity
We study the implications of Planck data for models of dark energy (DE) and modified gravity (MG), beyond the cosmological constant scenario. We start with cases where the DE only directly affects the background evolution, considering Taylor expansions of the equation of state, principal component analysis and parameterizations related to the potential of a minimally coupled DE scalar field. When estimating the density of DE at early times, we significantly improve present constraints. We then move to general parameterizations of the DE or MG perturbations that encompass both effective field theories and the phenomenology of gravitational potentials in MG models. Lastly, we test a range of specific models, such as k-essence, f(R) theories and coupled DE. In addition to the latest Planck data, for our main analyses we use baryonic acoustic oscillations, type-Ia supernovae and local measurements of the Hubble constant. We further show the impact of measurements of the cosmological perturbations, such as redshift-space distortions and weak gravitational lensing. These additional probes are important tools for testing MG models and for breaking degeneracies that are still present in the combination of Planck and background data sets. All results that include only background parameterizations are in agreement with LCDM. When testing models that also change perturbations (even when the background is fixed to LCDM), some tensions appear in a few scenarios: the maximum one found is \sim 2 sigma for Planck TT+lowP when parameterizing observables related to the gravitational potentials with a chosen time dependence; the tension increases to at most 3 sigma when external data sets are included. It however disappears when including CMB lensing
- …