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Abstract
Modern accelerator programming frameworks, such as
OpenCLTM, organise threads into work-groups. Remote-
scope promotion (RSP) is a language extension recently
proposed by AMD researchers that is designed to enable
applications, for the first time, both to optimise for the com-
mon case of intra-work-group communication (using memory
scopes to provide consistency only within a work-group) and
to allow occasional inter-work-group communication (as
required, for instance, to support the popular load-balancing
idiom of work stealing).

We present the first formal, axiomatic memory model of
OpenCL extended with RSP. We have extended the HERD
memory model simulator with support for OpenCL kernels
that exploit RSP, and used it to discover bugs in several
litmus tests and a work-stealing queue, that have been used
previously in the study of RSP. We have also formalised the
proposed GPU implementation of RSP. The formalisation
process allowed us to identify bugs in the description of RSP
that could result in well-synchronised programs experiencing
memory inconsistencies. We present and prove sound a
new implementation of RSP that incorporates bug fixes
and requires less non-standard hardware than the original
implementation.

This work, a collaboration between academia and industry,
clearly demonstrates how, when designing hardware support
for a new concurrent language feature, the early application

of formal tools and techniques can help to prevent errors,
such as those we have found, from making it into silicon.

Categories and Subject Descriptors C.1.4 [Processor Ar-
chitectures]: Parallel Architectures; D.3.1 [Programming
Languages]: Formal Definitions and Theory

Keywords Formal methods, graphics processing unit (GPU),
Isabelle, OpenCL, programming language implementation,
weak memory models, work stealing

1. Introduction
Remote-scope promotion (RSP) is a new accelerator program-
ming feature that was recently proposed by a team of AMD
researchers [19]. In a nutshell, RSP allows two popular accel-
erator programming paradigms – memory scopes and work
stealing – to be unified for the first time. Simulation of a
prototype GPU implementation has demonstrated that appli-
cations using RSP perform on average 17% faster than those
using only memory scopes, and 6% faster than those that use
only work stealing. This encouraging result indicates that the
feature has the potential to be included in future GPUs.

In this work we scrutinise the complex and subtle design
of RSP and reason rigorously about its correctness using
formal techniques. We report on our findings, presenting the
technical details of our RSP formalisation, and highlighting
the role our formal approach played in identifying bugs in
the original design.

This work stems from a collaboration between AMD
researchers and an academic team of formal semanticists.
Our collaboration was made possible by AMD’s decision to
publish details of new processor features very early in their
design cycle, a departure from the more closed approach
typical among processor vendors. We report on bugs that we
found in the RSP design, demonstrating the value of applying
formal techniques from the academic research community
and collaborating early during the design of hardware support
for a new concurrent programming language construct.
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Using a combination of a proof assistant (Isabelle [18]),1

a cutting-edge memory modelling tool (HERD [3]), and
recent advances in modelling the behaviour of heterogeneous
programming languages (e.g., [24]), we have translated the
original proposal for RSP, which encompasses both high-level
programming language extensions and low-level architectural
extensions, into rigorous mathematics. We have discovered
and identified fixes for several bugs with the previously-
described design, improved its clarity both for users and
implementers, proposed several modifications that simplify
the design and may improve its performance, and proved the
soundness of the implementation (after applying our fixes
and improvements).

Our work is distinguished from other efforts to formalise
the semantics of complex processor architectures [1, 3, 16,
22, 23], by its focus on a prototype architecture that is
several years away from fabrication. We therefore deliberately
focus on an idealised model. This enables rapid development,
and leads to what we regard as the key value of our work:
identifying fixes and improvements to the RSP design to
be made at very little cost. In contrast, errors and bugs
discovered late in the design cycle or errors that make it
into silicon can be extremely expensive to fix or work around.

We report the following research contributions:

1. Formalising the OpenCL+RSP language (§3) We de-
scribe precisely how the OpenCLTM framework for heteroge-
neous parallel programming can be extended to capture RSP;
we call the extension OpenCL+RSP.

2. Testing OpenCL+RSP programs (§4) We have extended
the HERD litmus test simulator [3] to enable enumeration of
the allowable outcomes of small OpenCL+RSP programs.
This allows developers to understand how key concurrency
idioms at the heart of their algorithms might behave on any
(current or future) correct implementation of OpenCL+RSP.
We applied HERD to a set of 12 AMD OpenCL+RSP litmus
tests and an AMD work-stealing queue implementation,
revealing issues in four of the litmus tests and a data race in
the work-stealing queue implementation. These issues have
been confirmed and fixed.

3. Formalising the implementation of OpenCL+RSP (§5)
Informed by the published design [19] and collaboration be-
tween the authors and other AMD designers, we present a for-
malisation of the original implementation of OpenCL+RSP.
This comprises a mathematical model of a simple GPU de-
vice, semantics for a minimal assembly language for this
device, and a scheme for compiling OpenCL+RSP to this
assembly language.

The formalisation process led to the discovery of two bugs
in the initially proposed design of RSP, one that violates the
atomicity of atomic read-modify-write (RMW) operations,
and one that renders the message-passing idiom unusable.

1 As discussed further in §5, we have used Isabelle to formalise and
type-check our definitions and theorem statements; we have not mechanically
proved the theorems.

This idiom is central in lock-free concurrency and used at the
heart of work stealing, the key motivator for OpenCL+RSP.
We confirmed the message-passing bug to occur twice in the
prototype implementation. A third potential instance of this
bug was actually avoided in the prototype implementation
by the inclusion of cacheline stalls, which prevent certain
problematic interactions; but these stalls were not mentioned
in the description of the implementation. These two scenarios
respectively illuminate how formalisation can help designers
not only to make correct designs, but to understand which
details make their designs correct.

4. Improving the implementation (§5.4, §5.5) Our formal-
isation also identified several significant simplifications that
can safely be made to the OpenCL+RSP implementation: by
reordering certain low-level instructions, the bugs we found
can be fixed without the need for expensive cacheline stalls.
Importantly, this avoids the need for non-standard hardware
to support cacheline stalling, a prerequisite of the original im-
plementation proposal. Additionally, the avoidance of stalling
may improve the efficiency of the implementation.

5. A proof of soundness (§6) Finally, we prove that our
improved implementation is sound, in that it does provide
the required high-level semantics. More precisely: we show
that every low-level execution of a compiled OpenCL+RSP
program is contained in the set of executions that are allowed
for the program with respect to the high-level semantics. Our
soundness result provides a firm basis for designers looking
to support RSP in their next-generation GPU architectures.

Online companion material We provide Isabelle scripts
containing type-checked definitions for our formalisation
of RSP, and an extended write-up of our (non-mechanised)
soundness proof, at the following webpage:

http://multicore.doc.ic.ac.uk/RSP/

2. Background: Remote-Scope Promotion
2.1 Heterogeneous Programming with OpenCL
The OpenCL programming framework [17] provides a hi-
erarchical execution model, geared towards heterogeneous
systems made up of CPUs, GPUs, and other accelerators.
Each thread2 is identified according to the work-group to
which it belongs, and the device on which that work-group is
executing. A thread executes on a processing element and a
work-group on a compute unit. A similarly-structured mem-
ory hierarchy comprises a private memory region per thread,
a region shared among threads in a work-group (e.g., an
L1 cache), a region shared among work-groups on a device
(e.g. an L2 cache), and a global region available to the whole
system. High performance can be achieved by restricting data
sharing to lower levels of the memory hierarchy where pos-
sible, minimising memory latency. Figure 1 illustrates the
execution and memory hierarchies.

2 Threads in OpenCL are also called work-items.



a . . . b . . . c . . . dProcessing element
(executes a thread)

L1 cacheCompute unit
(executes a work-group)

L2 cache
Device

global memory
System

Figure 1. Illustration of the OpenCL execution hierarchy

Atomic operations OpenCL 2.0 provides atomic opera-
tions, which enable fine-grained lock-free synchronisation
both within and between work-groups and devices. The op-
erations provide a range of memory-consistency guarantees
according to semantics defined by a detailed C11-based mem-
ory model [17: §3.3]. Operations with weaker guarantees may
offer superior performance, but have more subtle semantics.

Memory scopes Where the OpenCL memory model departs
significantly from C11 is in its introduction of memory scope
constants. The three constants are:

s ::= WG current work-group
| DV current device
| ALL all devices

and, when attached to an atomic operation, govern how far
through the execution hierarchy the memory consistency
guarantees must be enforced. For instance, if a global memory
location x is currently being accessed only by threads in the
same work-group, such as a and b in Fig. 1, the accesses can
be scoped at WG so that they need travel no further than the
L1 cache that a and b share.

Both participants in a synchronisation operation are re-
quired to use a memory scope that is wide enough to encom-
pass the other. This rule would be violated if, for instance,
thread a in Fig. 1 writes x at WG scope, thread c (in a differ-
ent work-group) reads x, and there is no synchronisation in
between. As we shall explain further in §2.2, such a situation
is deemed by OpenCL to be a race: a programmer fault that
renders the whole program undefined.

Work stealing is a technique for achieving dynamic load
balancing in high-performance computing. In an OpenCL
context, work stealing involves each work-group owning a
task queue, and idle threads popping tasks from another work-
group’s queue should their own queue become empty. The
ability to steal work is valuable when it is impractical to
distribute tasks evenly among work-groups at compile-time
– either because of a non-uniform computational cost per
task that depends on input data, or because new tasks can be
created dynamically at run-time [8].

To scope or to steal? The current design of OpenCL allows
programmers to exploit work stealing, or to exploit the

scoping mechanism, but not both. To see this, consider an
application that exploits scopes by having threads use work-
group scope when pushing to or popping from their local
task queue. This makes stealing impossible, regardless of the
stealer’s scope, because synchronisation fails unless both of
the operations that are synchronising use wide-enough scopes.
To make stealing possible, we could arrange that every queue
operation uses a wider scope, but then we lose the benefit of
using scopes: the common case (accessing one’s own queue)
would take a performance hit to allow the uncommon case
(stealing from another’s queue).

A solution: remote scope promotion Previous work pro-
posed an extension to OpenCL’s scoping mechanism [19],
remote-scope promotion (RSP), that is compatible with work
stealing. It was shown that on a range of benchmarks from
the Pannotia suite [9] (including Google’s PageRank), RSP
combined with stealing leads to an average speedup of 17%
over scopes alone, and 6% over stealing alone.

In OpenCL extended with RSP (OpenCL+RSP), each
atomic operation has an extra Boolean flag, indicating
whether the operation is remote. In ordinary scoped syn-
chronisation, both of the synchronising operations must use
a wide-enough scope. The essence of RSP is to add another
sufficient condition for synchronisation; namely, that just one
of the participants has a wide-enough scope and is flagged as
remote. In this case, the scope of the other participant is irrel-
evant; it is silently promoted to match the first participant’s
scope.

A mapping from OpenCL+RSP to hardware primitives
was described previously. Remote operations are compiled
to special instructions for flushing or invalidating caches
that belong to other work-groups or other devices. It was
informally argued that the implementation is correct. The
implementation has been realised in a simulator and has been
tested using a number of examples.

The need for formality Like all new concurrency-related
language constructs, RSP has a subtle semantics that may
be hard to implement correctly, and is hard to reason about.
(For instance, from the prose description above: what should
happen when both participants in a pair of synchronising
operations are flagged as remote?) Due to the inconclusive
nature of testing, and the fundamental problems associated
with testing concurrent systems, we turn to formal methods
for a rigorous treatment of RSP.

2.2 The OpenCL Memory Model
The OpenCL 2.0 memory model, which builds on the C11
memory model, is the part of the OpenCL language specifica-
tion that covers reading and writing shared memory locations.
It defines which values are allowed to be read at a given
program point, and whether two memory accesses have a
data race. It is principally concerned with the collection of
atomic functions, which can expose to programmers the var-
ious weak memory behaviours of the underlying hardware.



The C11 memory model was first formalised by Batty et
al. [6]; this formalisation was then extended to the OpenCL
case by Wickerson et al. [24]. In §3, we extend the memory
model further to formalise OpenCL+RSP.

Axiomatic memory models All of these memory models
are defined axiomatically. To define the set of a program’s
allowed executions in this style, one first generates a superset
thereof, called the set of pre-executions, which comprises
those executions that could be obtained with the use of a com-
pletely non-deterministic memory that returns an arbitrary
value for each load. An ‘execution’, in this context, comprises
a set of run-time memory events (such as RDV(x, 42), which
indicates the value 42 being read from x using device scope),
and several relations between them (such as the program or-
der of the corresponding instructions). One then whittles this
down, using a set of axioms, to the set of consistent execu-
tions. A pre-execution is consistent if it can be extended to
a candidate execution that satisfies all of the axioms of the
memory model. A candidate execution additionally contains a
reads from relation (representing data flow from write events
to read events) and a modification order among the writes
to each location. These two relations together constitute the
execution witness. If any of a program’s candidate executions
is deemed to have a data race, the behaviour of the program
is undefined, which means that it may behave arbitrarily (and
the behaviours of candidate executions that do not have data
races become irrelevant).

Syntax of OpenCL programs We restrict our attention to a
small OpenCL-like language that includes non-atomic loads
and stores (loadna and storena), scoped atomic acquire-
loads and release-stores (loads and stores), and a scoped
‘atomic increment’ operation (fetch_incs) that demon-
strates an acquire+release RMW. Full OpenCL includes
other varieties of atomic memory access, such as relaxed and
sequentially-consistent.

In real OpenCL, all threads execute the same kernel
program, but can obtain differing control or data flows by
querying their own thread identifiers. In our simplified setting,
we suppose that each thread is programmed independently.
Reflecting the execution hierarchy in OpenCL, we formalise
an OpenCL program P as a list of lists of lists of sequential
programs:

P ::= Pdv |||| . . . |||| Pdv

Pdv ::= Pwg ||| . . . ||| Pwg

Pwg ::= p || . . . || p

where p is a piece of sequential code, |||| separates code
executed by different devices, ||| separates code executed
by different work-groups in the same device, and || separates
code executed by different threads in the same work-group.

Example 1. The following program comprises two threads
in two different work-groups on the same device.

fetch_incDV(x) storeDV(x, 2)

One thread increments x and the other sets x to 2. The use of
DV-scope for both operations ensures that these conflicting
accesses do not race.

2.3 Details of the Memory Model
The details of the OpenCL memory model are summarised
in Fig. 2. We give the language from which event labels
are drawn – this ranges over read (R), write (W), and read-
modify-write (RMW) events (which represent, for instance,
an atomic increment or a successful compare-and-swap). We
provide identifiers for particular subsets of events in any given
candidate execution, and list the basic and derived relations
between events. We finally give the axioms of the memory
model, following the .cat format of Alglave et al. [3].
Five axioms (the consistency axioms) characterise consistent
executions, and one further axiom (the non-faultiness axiom)
characterises the absence of data races. We shall explain these
axioms further, after introducing the following notational
conventions.

Notation. We write r+ for the transitive closure of a relation
r, r−1 for its inverse, and we abbreviate r ∪ id as r?, where
id is the identity relation. We write ¬ for complement, \
for set difference, unv for the universal relation, and [s] to
abbreviate {(x, x) | x ∈ s}. We define relational composition
(;) such that (x, z) ∈ r1 ; r2 if (x, y) ∈ r1 and (y, z) ∈ r2 for
some y. (This notation is convenient for describing shapes in
execution graphs; for instance, the relation [s1];r1;[s2];r2;[s3]
relates events in s1 to those in e3 that can be reached by taking
an r1-edge to an event in s2 and then taking an r2-edge.)

The rs ′ and rs relations define the release sequence,
which is inherited without modification from C11 and can be
safely ignored by the unfamiliar reader. The incl1 relation
connects event e1 to event e2 whenever e1’s scope is no
narrower than the distance between the events in the execution
hierarchy at run-time. When this relation also holds in the
opposite direction (incl−1), then the events are deemed to
have inclusive scopes, as captured by the incl relation. Inter-
thread synchronisation (sw , ‘synchronises-with’) relates an
atomic write to an atomic read in another thread that reads
from it, providing the two events have inclusive scopes.
Happens-before (hb) edges are induced both by the program
order and by synchronisation. They must not form cycles
(Hb); that is, the shape hb is forbidden.

The principle of coherence (Coh) governs the relationship
between hb and mo: if the write w1 is mo-before the write
w2, then w2 (and any events that read from w2) must not
happen before w1 (nor before any events that read from e1).
Coherence forbids the following shapes.

mo

rf
hb

rf

mo

hb
rf

mo

rf
hb

mo

hb

The reads-from axiom (Rf) forbids reads to observe writes
that happened after them (hb rf ). The non-atomic reads-



Location types: Each location is atomic or non-atomic

Event labels: For locations x, scopes s, and values v:
• Wna(x, v) / Rna(x, v): non-atomic write/read
• Ws(x, v) / Rs(x, v): atomic write/read
• RMWs(x, v, v

′): atomic read-modify-write

Predefined subsets of events:
• R: the set of read and RMW events
• W : the set of write and RMW events
• I: the set of initialisation events (each a non-atomic write

of 0, one per location)
• nal : events that access a non-atomic location
• na: non-atomic events
• WG / DV / ALL: the set of events that are parameterised by

the respective memory scope

Primitive relations:
• thd /wg /dv : an equivalence relation over all (non-

initialisation) events, relating events from the same
thread/work-group/device

• loc: an equivalence relation over all events, relating events
that access the same location

• sb (sequenced before): a strict partial order specifying
the order of each thread’s instructions, and also linking
initialisation events to non-initialisation events

• rf (reads from): contained in W × R, relating writes to
reads when the locations and values match, each read
reads from exactly one write

• mo (modification order): a strict partial order that relates
all and only writes to the same atomic location

Derived relations:
• rs ′

def
= thd ∪ (unv ; [R ∩W ])

• rs
def
= mo ∩ rs ′ \ ((mo \ rs ′) ; mo)

• incl1
def
= ([WG] ; wg) ∪ ([DV] ; dv) ∪ ([ALL] ; unv)

• incl
def
= incl1 ∩ incl1−1

• sw
def
= ([W \ na] ; rs? ; rf ; [R \ na]) ∩ incl \ thd

• hb
def
= (sb ∪ sw)+

• hbl
def
= hb ∩ loc

• vis
def
= hb \ (hb ; [W ] ; hbl)

• conflict
def
= ((W ×W ) ∪ (W ×R) ∪ (R×W )) ∩ loc

• dr
def
= conflict \ hb \ hb−1 \ incl

Consistency axioms:
irreflexive(hb) (Hb)
irreflexive((rf −1)? ; mo ; rf ? ; hb) (Coh)
irreflexive(rf ; hb) (Rf)
empty((rf ; [nal ]) \ vis) (Narf)
irreflexive(rf ∪ (mo ; mo ; rf −1) ∪ (mo ; rf )) (Rmw)

Non-faultiness axiom:
empty(dr) (Dr)

Figure 2. The OpenCL memory model (simplified)

from axiom (Narf) requires non-atomic reads to observe an
immediate predecessor in hb, called a visible write: i.e. we
must have hb rf but no hb-intervening write to the same

location

(
W rf

hb

hbl

)
.

The principle of RMW atomicity (Rmw) dictates that each
RMW event must observe the mo-latest write to that location;
that is, it must not observe itself ( rf ), it must not observe
a write that is too late (mo rf ), and it must not observe a

write that is too early
(

rf
mo
mo

)
.

Finally, an execution has a data race (dr ) if two conflicting
events are unrelated by happens-before and do not have
inclusive scopes. The non-faultiness axiom (Dr) detects data
races.

Example 2. Here are two executions of the program in
Example 1, both of which satisfy all of the consistency
axioms and the non-faultiness axiom. The initial event is
drawn above the events of the two parallel threads. Reflexive
and transitive edges are elided. The left-hand execution gives
rise to the final state x = 2, while the right-hand one finishes
with x = 3.

Wna(x, 0)

RMWDV(x, 0, 1)

WDV(x, 2)

rf sb
mo

mo
incl

sb

Wna(x, 0)

RMWDV(x, 2, 3)

WDV(x, 2)

rf

sb
mosb

mo

incl

Other final values for x are not allowed. For instance, the
following execution, which would result in x = 1, falls foul of
the Rmw axiom: it constitutes a violation of RMW atomicity.

Wna(x, 0)

RMWDV(x, 0, 1)

WDV(x, 2)

rf
sb

mo
sb

mo

incl

Example 3. If the program in Example 1 were changed so
that the increment had work-group scope:

fetch_incWG(x) storeDV(x, 2)

then the scope-inclusion (incl ) edges seen in Example 2
would all be replaced with data race (dr ) edges.

Simplifications and other discrepancies with the standard
We do not consider the distinction between global memory
(shared among all threads) and local memory (shared among
threads in a work-group), and instead treat all memory as
global; local memory is not interesting in the context of
memory scopes, since the only allowable scope with which
local memory can be accessed atomically is WG. Fences,
barriers, relaxed atomics, and sequentially-consistent atomics



were not discussed in previous work on RSP [19] and are
largely orthogonal.

OpenCL employs a stricter form of scope inclusion, in
which both events must additionally use the same memory
scope. The version we use here follows a proposal called
HRF-relaxed [10], and is a necessary prerequisite for RSP.

3. Formalising OpenCL+RSP
We now describe our first research contribution: how to ex-
tend the OpenCL memory model with RSP. The purpose of
this extension is: (a) to enable programs that exploit RSP to
be analysed (§4), and (b) to enable a proof that the implemen-
tation of the language features is correct (§5). Note that (b)
is an important enabler for (a), because the program analy-
sis would be meaningless were the OpenCL+RSP memory
model impossible to implement.

Adding RSP to OpenCL first involves extending the syntax
of the language, and to this end, we propose simply to add an
additional parameter to each existing atomic function, which
accepts either N (for non-remote) or R (for remote) – see
Example 4 below. Second, we must extend the semantics
of the language (i.e., the memory model). This requires
changing just one definition, the incl relation in Fig. 2, as
follows:

incl
def
= incl1 ∩ incl1−1

∪ ([rem] ; incl1 ) ∪ (incl1−1 ; [rem])

where rem identifies the set of events representing a remote
operation. In the original definition, both events must have
wide enough scopes; in the new version, the events (say e1
and e2) may also synchronise if e1’s scope is wide enough to
reach e2 and e1 is remote, or if e2’s scope is wide enough to
reach e1 and e2 is remote.3

Example 4. If the program in Example 3 were changed so
that the store became remote:

fetch_incWG,N(x) storeDV,R(x, 2)

then the scope-inclusion (incl ) edges seen in the executions
in Example 2 would be restored.

The simple manner in which we can adapt the memory
model for RSP illustrates the elegance of an axiomatic
memory model. Our extension is conservative in the sense
that it does not affect the semantics of OpenCL programs that
do not exploit RSP. It is significantly simpler than a previous
outline formalisation [19], and is further distinguished by
being founded on an existing, comprehensive formalisation
of OpenCL [24]. Although the details of implementing RSP
are rather involved (as we discuss in detail in §5), the

3 We initially sought to encode RSP by instead adding an extra disjunct to the

incl1 relation: incl1 def
= . . .∪ ([rem] ;unv). Although seductively simple,

this version does not capture the intended behaviour of RSP in the case where
both participants are marked remote; rather, it would erroneously allow two
remote WG-scoped operations to synchronise across different devices.

effect of RSP on the memory model is minimal. The minor
modification to the incl relation is all that is required to
enable simulation of litmus tests that exploit RSP, which we
discuss next.

4. Testing OpenCL+RSP Programs
We extended the memory model simulator HERD to support
the simulation of small OpenCL+RSP programs against the
newly-extended memory model (§4.1). We then used HERD
to analyse a suite of test programs that we obtained from the
broader group of original RSP developers, uncovering several
faults in the process (§4.2), and further exercised HERD to
debug a larger OpenCL+RSP application: a work-stealing
queue (§4.3).

4.1 Extending HERD

HERD is a generic memory model simulator [3]. Its basic
operation is to generate and iterate through a set of candi-
date executions of a given litmus test, and assess whether
each is consistent and/or faulty according to the axioms of
a given memory model, as described using the .cat spec-
ification language. Originally designed for CPU assembly
programs [3], HERD has recently been extended with the
capacity to simulate C11 and OpenCL programs [24]. For
the current work, we have extended HERD further, to support
OpenCL+RSP. This entailed two sub-tasks: extending the
front end of HERD to understand remote versions of atomic
operations in litmus tests, and extending the memory model
specification language with an additional identifier, rem , to
stand for the set of remote events in an execution.

4.2 Litmus Testing
The original developers of RSP used a suite of 12 litmus tests
to gain confidence in the correctness of their implementation.
These tests, which are mostly variants on standard litmus
tests, characterise the building blocks of parallel algorithms
that use RSP. We obtained the suite from the RSP developers,
and used HERD to simulate each test against our formalisation
of the OpenCL+RSP memory model.

Preparation We encoded each program into the .litmus
format that is accepted by HERD. In doing so, we observed
that the original litmus tests make several uses of empty
loops that spin until a given location holds a specific value,
such as ‘while (load(x) != 1); C’. Because such pro-
grams have arbitrarily-many candidate executions (one for
each possible iteration count) we followed standard practice
in preparing litmus tests ( e.g., Alglave et al. [1]) and re-
placed the pattern above with ‘if (load(x) == 1) {C}’,
ignoring those executions where the conditional test failed.

Results We performed simulation on a 2.8 GHz MacBook
Pro, and observed that each litmus test was fully simulated
in less than one second, except for two tests that made use
of several compare-exchange instructions; each of these tests
was fully simulated in less than three minutes.



Seven of the 12 litmus tests included postconditions on the
final state of memory that we found, through analysis with
HERD, to be satisfied by all consistent executions. Another
test exhibited a deliberate data race that was confirmed by
HERD.

Our analysis exposed bugs in the other four litmus tests.
The first test had an unintentional data race, resulting from a
discrepancy between the HSA 1.0 memory model [13] and
the OpenCL 2.0 memory model. Specifically, OpenCL does
not enforce happens-before between two operations that ac-
cess different regions of memory even if they belong to the
same thread, so one cannot assume the HSA behaviour, which
does enforce happens-before here. The second test also con-
tained a data race. The third had an incorrect postcondition
due to a simple arithmetic error. The fourth had a postcon-
dition that was too strong: it forbade certain executions that
were allowed by the axioms of the memory model. As it
happens, the proposed implementation does not give rise to
the executions that this litmus test forbids; it can therefore
be deemed a conservative implementation of the OpenCL
specification in this regard.

4.3 Case Study: A Work-Stealing Queue
We used HERD to probe the correctness of a more realis-
tic OpenCL+RSP application: a work-stealing queue. This
application, is a key motivator for RSP [19: §3.2], and ex-
ploits RSP by simultaneously optimising for the common
case of accessing the local task queue (by using WG-scoped
non-remote operations in push and pop) and enabling the
uncommon case of accessing a different work-group’s queue
(by using DV-scoped remote operations in steal).

Alglave et al. [1] have uncovered two bugs in a similar
CUDA implementation [8] that led to tasks occasionally
being dropped from queues; both bugs arose from assuming
an overly-strong memory model. This was demonstrated by
hand-compiling suspect slices of the CUDA code into GPU
assembly litmus tests (named dlb-mp and dlb-lb) and showing
experimentally that these tests could produce results that
would lead to bugs at the CUDA level.

We have been able to demonstrate the complementary re-
sult for the OpenCL+RSP work-stealing queue. We produced
OpenCL+RSP litmus tests capturing the same thread interac-
tions that dlb-mp and dlb-lb captured at the GPU assembly
level. Using HERD, we were able to verify the absence of
the bugs associated with the original CUDA implementa-
tion, thanks to sufficient use of store-release and load-acquire
functions to ensure necessary synchronisation. Because our
result demonstrates correctness at the level of the program-
ming language, it extends to any correct implementation of
OpenCL+RSP.

We emphasise that we have not verified the entirety of the
work-stealing queue implementation; we merely state that it
is free from two specific bugs. Indeed, on the contrary, we
found, reported, and confirmed a data race that could arise
when performing a pop and a steal on the same queue. The

race, which arises because pop can non-atomically write to
the queue’s tail pointer while the steal atomically reads
from it, can be rectified by upgrading the non-atomic write to
a relaxed atomic write.

5. A Formalised Implementation of
OpenCL+RSP

Having studied the programming language semantics of RSP,
we now turn our attention to formalising a low-level imple-
mentation of RSP, transforming the published description of
the implementation of OpenCL+RSP into rigorous mathemat-
ics. Our formalisation comprises a mathematical model of
a simple GPU device (§5.1), the syntax and semantics of a
minimal assembly language for this device (§5.2 and §5.3)
and a scheme for compiling OpenCL+RSP to assembly (§5.4
and §5.5).

Our formalisation effort found several opportunities to
improve the original compilation scheme, ranging from
improving inefficiencies to eliminating errors. Our revised
compilation scheme is simpler than the original and addresses
all of the errors and inefficiencies we found, hence we present
the revised scheme first (§5.4), then explain the original
scheme in terms of how it differs from our proposal (§5.5).
In §6 we prove that our revised scheme is sound.

Tool support from Isabelle The definitions in this section
have been formalised using the Isabelle proof assistant [18],
and the scripts are available in our online companion material.
We have also formalised the statement of our soundness
theorem (Thm. 1, §6), but have not mechanised its proof.
We found the type-checking and custom syntax that Isabelle
provides to be invaluable while designing our model. We
remark that the semantics of assembly instructions (§5.2),
each of which updates various components in a deeply-nested
structure of records and lists, is naturally expressed in an
imperative style; because Isabelle demands a functional style,
our formalisation differs in this respect from the current
presentation.

5.1 A Model of GPU Hardware
Our model of GPU hardware closely resembles the illustra-
tion in Fig. 1, which in turn is based on the model used for
the original design of RSP [19: Fig. 4].

Figure 3a defines the set of states (SyState) that the
machine can inhabit; this is defined in terms of numerous
other sets, and in some cases we provide the name of a
variable we shall use to range over the elements of the set. We
use d, w and t to range over device, work-group and thread
identifiers, all of which are natural numbers. In Fig. 3a we
use an identifier followed by colon to name a component of a
tuple so that, for instance, we can refer to the third component
of a CacheEntry E by writing E.fr.

Complementing the formal definitions, Fig. 3b gives a
pictorial representation of the machine state, rendering each



x ∈ Loc
r ∈ Reg

v ∈ Val
def
= Z

FifoEl
def
= Loc ∪ {FLUSHd,w,t | d,w, t ∈ N}

Fifo
def
= FifoEl queue

Hygiene
def
= {CLEAN, DIRTY}

Freshness
def
= {VALID, INV’D}

CacheEntry
def
= Val × (hy: Hygiene)× (fr: Freshness)

C ∈ Cache
def
= (Loc ⇀ CacheEntry)× (fifo: Fifo)

l ∈ Lock
def
= { } ∪ {d, w, t | d,w, t ∈ N}

ThState
def
= Reg → Val

WgState
def
= ThState list× (L1: Cache)× (rmw: Lock)

DvState
def
= WgState list× (L2: Cache)×

(lockfile: Loc → Lock)

Global
def
= Loc ⇀ Val

Σ ∈ SyState
def
= DvState list× (gl: Global)
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(b) A machine state Σ, pictorially

Figure 3. Machine states

component as a rounded rectangle, and using a stacking
effect to indicate a multiplicity of similar components.

The state of the system (SyState) comprises the state of
each device plus the contents of global memory, which is
a partial function from locations (Loc) to values (Val ). We
assume that all values are mathematical integers, and that
global memory contains any location that is requested.

The state of a device (DvState) comprises the state of each
of its work-groups, the contents of the L2 cache, and a ‘lock
file’ that records, for each location, whether it is locked in the
L2 cache (d, w, t, where d,w, t identifies the thread holding
the lock) or unlocked ( ). While a location is locked in the
L2 cache by one thread, no other thread can read, write, evict,
fetch, or flush it.

The state of a work-group (WgState) comprises the state
of each of its threads, the contents of the L1 cache, plus
an additional lock that stalls the execution of RMW opera-
tions (and is taken by threads executing remote RMW and
store operations to ensure atomicity). The state of a thread
(ThState) comprises its register file, which is a total function
from registers to values. We assume an unlimited number of
registers.

A cache (Cache) comprises two components: a partial
function from locations to cache entries, and a synchroni-
sation fifo. Each entry (CacheEntry) comprises a value, a
hygiene bit (CLEAN or DIRTY), and a freshness bit (VALID
or INV’D). Note that each location in memory has a separate
cache entry (cf. Remark 1). The synchronisation fifo (Fifo) is
a hardware component introduced as part of AMD’s QuickRe-
lease technology [11]. It is a queue whose elements (FifoEl )

are locations that may need to be flushed to the lower levels
of the cache; by inserting flush markers (FLUSH) among the
locations, tagged with their own device/work-group/thread
identifier, threads can ascertain which locations have been
flushed. We assume that the queue datatype supports in-place
enqueue() and dequeue() methods, and exposes a tail field.

Notation. We write Σd for the state of device d, Σdw for the
state of work-group w in that device, and Σdwt for the state
of thread t in that work-group. When we pass an Loc x to
a Cache C, writing C(x), we are implicitly looking up x in
the first of C’s two components.

5.2 Assembly Language
We formalise our assembly language so that the behaviour
of each thread in each work-group in each device is spec-
ified independently. Accordingly, and in keeping with our
formalisation of OpenCL (§2.2), an assembly program is a
list (devices) of lists (work-groups) of lists (threads) of lists
(instructions of a thread) of assembly instructions.

The assembly language instructions are listed in the left-
hand column of Table 1. In summary, we have: loading
from a location to a register, storing from a register to a
location, atomically incrementing a location in the L1/L2
cache (this being the simplest representative of the class of
atomic RMW operations), inserting a FLUSH marker into one
or more L1 or L2 caches, invalidating all entries in one or
more L1 caches, locking/unlocking a location in the L2 cache,
and obtaining/releasing all of the RMW locks in the current
work-group/device/system. Other standard instructions, and
in particular control flow instructions, would be required to



Instr. Effect on state Σ when
executed by thread (d,w, t)

LD r x if Σdw.L1(x).fr = VALID then
Σdwt(r) := Σdw.L1(x)

else block
ST r x store(Σdw.L1, x,Σdwt(r))

INCL1 r x if ¬readyd,w,t(Σdw.rmw) then block
else if Σdw.L1(x) = (v, _, VALID) then

Σdwt(r) := v
store(Σdw.L1, x, v + 1)

else block
INCL2 r x if ¬readyd,w,t(Σdw.rmw) then block

else if Σdw.L1(x).hy = DIRTY then block
else if ¬readyd,w,t(Σd.lockfile(x)) then block
else if Σd.L2(x) = (v, _, VALID) then

invalidate(Σdw.L1, x)
∀d′. invalidate(Σd′ .L2, x)
Σdwt(r) := v
store(Σd.L2, x, v + 1)

else block
FLUL1 WG Σdw.L1.fifo.enqueue(FLUSHd,w,t)

FLUL1 DV ∀w′.Σdw′ .L1.fifo.enqueue(FLUSHd,w,t)

FLUL1 SY ∀d′.∀w′.Σd′w′ .L1.fifo.enqueue(FLUSHd,w,t)

FLUL2 DV Σd.L2.fifo.enqueue(FLUSHd,w,t)

FLUL2 SY ∀d′.Σd′ .L2.fifo.enqueue(FLUSHd,w,t)

INVL1 WG ∀x. invalidate(Σdw.L1, x)

INVL1 DV ∀w′.∀x. invalidate(Σdw′ .L1, x)

INVL1 SY ∀d′.∀w′.∀x. invalidate(Σd′w′ .L1, x)

LKL2 x if ¬readyd,w,t(Σd.lockfile(x)) then block
else Σd.lockfile(x) := d, w, t

ULL2 x Σd.lockfile(x) :=

LKrmw DV if ∃w′.¬readyd,w,t(Σdw′ .rmw) then block
else ∀w′.Σdw′ .rmw := d, w, t

LKrmw SY if ∃d′.∃w′.¬readyd,w,t(Σd′ w′ .rmw) then block
else ∀d′.∀w′.Σd′ w′ .rmw := d, w, t

ULrmw DV ∀w′.Σdw′ .rmw :=

ULrmw SY ∀d′.∀w′.Σd′ w′ .rmw :=

where:

store(C, x, v)
def
= C(x) := (v, DIRTY, VALID)

C.fifo.enqueue(x)

readyd,w,t(l)
def
= (l = d, w, t) ∨ (l = )

invalidate(C, x)
def
= ifC(x) 6=⊥ then C(x).fr := INV’D

else nop

Table 1. Semantics of assembly instructions

provide a complete set; we limit the presentation here to those
that manipulate the memory system.

Table 1 also defines the effect of each assembly instruction
when executed from state Σ by thread t in work-group w in
device d. Formally, each instruction is modelled as a non-
deterministic state transformer: a function from SyState to
P(SyState). A blocked instruction returns the empty set,
denoted block. For the time being, no instruction produces
more than one final state,4 so we define each instruction using
deterministic, imperative pseudocode. We overload the ∀-
operator to provide an imperative foreach construct, leaving
the bounds implicit.

These pieces of pseudocode leave only one other aspect
of the instructions’ behaviours implicit: each piece of pseu-
docode, action , should be made conditional as follows:

if unflushedd,w,t(Σ) then block else action

where

unflushedd,w,t(Σ)
def
=

(∃d′. FLUSHd,w,t ∈ Σd′ .L2.fifo) ∨
(∃d′, w′. FLUSHd,w,t ∈ Σd′w′ .L1.fifo).

That is, a thread that has placed a FLUSH marker in an L1 or
L2 fifo must block until its marker is dequeued.

Loads and stores Regarding loads (LD) from location x: if
x’s L1 cache entry is valid, the cached value is copied into the
register file accordingly. Otherwise, the instruction blocks,
waiting for the environment to fetch a valid entry from deeper
in the cache hierarchy. In practice, the load would initiate this
fetch, but since our interest is in checking safety properties,
the existence of an environmental transition that will fetch
the new entry means that it suffices to suppose that the load
simply blocks. We describe environmental transitions in §5.3.

Stores (ST) to location x simply write to x’s L1 entry,
adding a new entry if none exists, and overwriting any
previous entry. The entry is marked dirty and valid (via the
store helper function) and the location is enqueued to the
cache’s synchronisation fifo.

Atomic increments The INCL1 and INCL2 instructions are
RMW operations, so they block if the rmw lock is held by
another thread. INCL1 increments x in the L1 cache, writing
the original value to the given register; it blocks until the L1
cache holds a valid entry for x (as with loads, we rely on
environmental transitions to provide this valid entry). If the
L1 entry for x is dirty, the instruction blocks until it is flushed;
otherwise, the L1 entry, if present, is invalidated. If access
to x’s L2 entry is forbidden (by another thread holding x’s
lockfile entry), then the instruction blocks. The instruction
also blocks if x’s L2 entry is invalid or absent; otherwise it
increments x in the L2 cache. When storing to the L2 cache,

4 While conducting our soundness proof, we make use of an alternative
semantics that ‘disengages’ the memory system, making loads completely
non-deterministic.



all of x’s entries in other devices’ L2 caches are invalidated
(via the ∀d′. invalidate(Σd′ .L2, x) step), to preserve cache
coherence.

Flushes and invalidates The FLUL1 instruction enqueues a
flush marker, tagged with the current thread’s identifier, into
the current L1 cache, or all L1 caches in the current device, or
all L1 caches in the system, depending on whether the instruc-
tion is parameterised by WG, DV, or SY, respectively. FLUL2
enqueues a flush marker into the current L2 cache, or all
L2 caches in the system, depending on whether it is param-
eterised by DV or SY, respectively. The INVL1 {WG, DV, SY}
instruction invalidates all entries in all L1 caches in the {work-
group, device, system}.

Locks LKL2 x and ULL2 x respectively lock and unlock the
location x in the current L2 cache, the former blocking if
the lock is currently held by another thread. LKrmw and ULrmw
respectively obtain and release all the rmw locks in the given
scope. While a work-group’s rmw lock is held by one thread,
no other thread in that work-group can perform an RMW
operation.

Reducing non-standard hardware requirements Some of
the instructions above require non-standard hardware support:
specifically, the ability for a thread to flush/invalidate caches
that are not in its direct path to global memory, to lock cache-
lines, and to lock RMW operations [19: §4.4]. An attractive
feature of the revised RSP implementation inspired by our
formalisation effort (§5.4) is that it does not use cacheline
locking, and thus requires less non-standard hardware.

5.3 Environmental Transitions
At any time, the ‘environment’ can transform the system
state. Environment transitions do not correspond to program
instructions, but each is triggered by a particular thread.

Locks aside, we point out that if an instruction is blocked,
there is always an environmental transition, or a series of
environmental transitions, that will result in the instruction
becoming unblocked. Locks, meanwhile, present the possi-
bility of deadlock if used carelessly.

The available environmental transitions are defined, in
Tab. 2, by their effect on the current system state Σ. Each
cell in the right-hand column of the table takes the form
if precondition then action , to reflect the fact that the
transition can only occur under certain conditions.

The transitions are: evicting a clean cache entry (EVICTL1
and EVICTL2), flushing a dirty cache entry and marking it
clean (FLUSHL1 and FLUSHL2), replacing a clean-or-absent
cache entry by fetching from the level below (FETCHL1
and FETCHL2), removing a location whose cache entry is
clean-or-absent from the tail of a fifo (DEQLOCL1 and
DEQLOCL2), and removing a FLUSH marker from the tail
of a fifo (DEQMARKERL1 and DEQMARKERL2).

Regarding the FETCHL1 action, notice that the newly-
fetched entry is always marked CLEAN, even if the L2 entry

Name Effect on state Σ when
triggered by thread (d,w, t)

EVICTL1(x) if Σdw.L1(x).hy = CLEAN then
Σdw.L1(x) := ⊥

EVICTL2(x) if Σd.L2(x).hy = CLEAN
and readyd,w,t(Σd.lockfile(x)) then

Σd.L2(x) := ⊥
FLUSHL1(x, v) if Σdw.L1(x) = (v, DIRTY, _)

and readyd,w,t(Σd.lockfile(x)) then
∀d′.Σd′ .L2(x).fr := INV’D
store(Σd.L2, x, v)
Σdw.L1(x).hy := CLEAN

FLUSHL2(x, v) if Σd.L2(x) = (v, DIRTY, _)
and readyd,w,t(Σd.lockfile(x)) then

Σ.gl(x) := v
Σd.L2(x).hy := CLEAN

FETCHL1(x, v) if notDirty(Σdw.L1, x)
and Σd.L2(x) = (v, _, VALID)
and readyd,w,t(Σd.lockfile(x)) then

Σdw.L1(x) := (v, CLEAN, VALID)

FETCHL2(x, v) if notDirty(Σd.L2, x) and Σ.gl(x) = v
and readyd,w,t(Σd.lockfile(x)) then

Σd.L2(x) := (v, CLEAN, VALID)

DEQLOCL1(x) if Σdw.L1.fifo.tail = x
and notDirty(Σdw.L1, x) then

Σdw.L1.fifo.dequeue()

DEQLOCL2(x) if Σd.L2.fifo.tail = x
and notDirty(Σd.L2, x) then

Σd.L2.fifo.dequeue()

DEQMARKERL1 if Σdw.L1.fifo.tail = FLUSH then
Σdw.L1.fifo.dequeue()

DEQMARKERL2 if Σd.L2.fifo.tail = FLUSH then
Σd.L2.fifo.dequeue()

where:

notDirty(C, x)
def
= (C(x) = ⊥) ∨ (C(x).hy = CLEAN)

Table 2. Environmental transitions

is DIRTY. There is no need to mark the L1 copy as dirty: the
value it holds is the same as the value that will be propagated
to global memory once the L2 entry (eventually) flushes.

Remark 1 (On caching protocols). We model caches as
if each cacheline holds the contents of a single location,
but real cachelines hold the contents of several consecutive
locations. Therefore, real caches may fetch more than just the
requested location; we model this by allowing any location
to be fetched at any time. Real caches may flush multiple
locations simultaneously, but since they use a dirty bit mask,



it is as if the flush is per-location. Real cacheline locking may
restrict access to more locations than our model suggests, but
this extra locking can only lead to fewer behaviours, thus
making our model sound. The caches used in the evaluated
design are write-through and write-allocate [19: Tab. 1];5

we safely capture write-through behaviour by allowing the
environment to flush at any time, and write-allocate behaviour
by having ST create a cache entry if none exists.

5.4 Compilation Scheme
We now consider the compilation of OpenCL+RSP programs
into the assembly language of §5.2.

Although our assembly language can apply to a multiple-
device system, this subsection, in line with the original RSP
proposal, considers only the single-device case [19: §5].
This means that our compilation scheme does not extend
to OpenCL+RSP operations that use ALL-scope.

The compilation scheme shown in the ‘Original’ column
of Tab. 3 is what we believe to be a faithful representation of
the original proposed scheme [19], informed by a series of
interviews with the broader set of RSP designers. As a result
of our formalisation work, we have found problems with
this scheme, which we elucidate in §5.5. We propose instead
the compilation scheme shown in the ‘Proposed’ column of
Tab. 3, which addresses these problems. We now explain and
justify our proposed scheme; a proof that it is sound follows
in §6.

Our explanation centres on how the compilation scheme
ensures correct release/acquire semantics (so that inter-work-
group message-passing programs, such as

storena(x, 42); if(r0 = loadDV,N(y))
storeDV,N(y, 1); r1 = loadna(x);

can never yield {r0 = 1, r1 = 0}) and also ensures RMW
atomicity (so that programs like the one in Example 3 can
never finish with x = 1).

Loads An OpenCL load that is non-atomic (na) or at work-
group (WG) scope is compiled to a lone LD instruction ¶. No
further instructions are required because consistency need
only be enforced as far as the L1 cache, which LD already
targets natively. For a load at DV scope ·, we ensure ‘acquire’
semantics by invalidating the L1 cache after the LD. This
ensures that subsequent loads observe values from the L2
cache.

To upgrade the load to a remote load, the invalidation is
preceded by a flush of all the L1 caches in the device ¸; this
ensures that subsequent loads observe values that have been
written to any L1 cache.

Stores As for loads, non-atomic or wg-scope stores are
compiled to lone ST instructions ¹. For a store at DV scope,
we ensure ‘release’ semantics by flushing the L1 cache before

5 The original RSP description reported the caches as being write-no-allo-
cate, but we confirm that this was in error.

OpenCL+RSP operation Original Proposed

¶
r = loadna(x)
r = loadWG,_(x)

LD r x LD r x

· r = loadDV,N(x) INVL1 WG
LD r x

LD r x
INVL1 WG

¸ r = loadDV,R(x) LKL2 x
FLUL1 DV
INVL1 WG
LD r x
ULL2 x

LD r x
FLUL1 DV
INVL1 WG

¹
storena(x, r)
storeWG,_(x, r)

ST r x ST r x

º storeDV,N(x, r) FLUL1 WG
ST r x

FLUL1 WG
ST r x

» storeDV,R(x, r) LKL2 x
FLUL1 WG
ST r x
INVL1 DV
ULL2 x

LKrmw DV
FLUL1 DV
INVL1 DV
ST r x
FLUL1 WG
INVL1 DV
ULrmw DV

¼ r = fetch_incWG,_(x) INCL1 r x INCL1 r x

½ r = fetch_incDV,N(x) FLUL1 WG
INVL1 WG
INCL2 r x

FLUL1 WG
INCL2 r x
INVL1 WG

¾ r = fetch_incDV,R(x) LKrmw DV
LKL2 x
FLUL1 DV
INVL1 WG
INCL2 r x
INVL1 DV
ULL2 x
ULrmw DV

LKrmw DV
FLUL1 DV
INVL1 DV
INCL2 r x
FLUL1 DV
INVL1 DV
ULrmw DV

Table 3. Compilation schemes, original and proposed

the ST. This ensure that prior stores are visible to operations
that subsequently read from the L2 cache º.

To upgrade to a remote store », we must also ensure
that prior stores are visible to operations that subsequently
read from their own L1 cache. For this, we precede the ST
instruction with a remote invalidate (INVL1 DV). The other
instructions are present to ensure that any wg-scoped incre-
ments, simultaneously executing on different work-group, are
performed atomically. Without them, we might observe such
violations of RMW atomicity as were seen earlier in Exam-
ple 2. Naturally, these increments cannot happen between the
LKrmw and ULrmw instructions. In case one happens before the
LKrmw, we use a remote flush (FLUL1 DV) to ensure that it is
promptly flushed, and thus unable to overwrite our upcoming
store. In case one happens after the ULrmw, we use a local



flush and a remote invalidate after our store, to ensure that
the increment will observe our stored value.

Atomic increments We map the atomic fetch-and-increment
operation, fetch_inc, to the INC assembly instruction. At
WG scope, the INC operation acts on the L1 cache ¼, and
at DV scope, it acts directly on the L2 cache ½. Performing
the operation directly on the L2 cache (rather than on the
L1 cache and then flushing) ensures the atomicity of RMW
operations. Moreover, at DV scope, the fetch_inc must pro-
vide acquire+release semantics. Accordingly, it begins with a
flush (inherited from the release store, º) and finishes with
an invalidate (inherited from the acquire load, ·).

Upgrading to a remote increment imposes several require-
ments ¾. To ensure acquire semantics, the remote increment
must end with (at least) a remote-flush and a local-invalidate
(as for the remote load discussed above). To ensure release
semantics, it must begin with (at least) a local-flush and a
remote-invalidate (as for the remote store). For RMW atom-
icity, it must observe any concurrent increments on another
L1 cache that occur before the RMW lock is acquired, and
any that happen after the RMW lock is released must ob-
serve the newly-incremented value. Therefore, the remote
increment must begin with (at least) a remote-flush and a
local-invalidate, and end with (at least) a local-flush and a
remote-invalidate. Merging all these constraints together, we
find remote flushes and invalidates are required both before
and after the INCL2.

5.5 Problems with the Original Scheme
We describe two errors in the original compilation scheme
(Tab. 3, ‘Original’ column), and explain how our proposed
scheme (‘Proposed’ column) addresses them. Finding these
issues early in the design process is, we believe, the key value
of formalisation efforts such as ours.

5.5.1 Non-Remote Loads Can Violate Message-Passing
Because DV-scoped non-remote loads (· in Tab. 3) invalidate
their L1 cache before the LD [19: §2.3], coherence (axiom Coh
in Fig. 2) is violated. To explain this, Fig. 4 exhibits a machine
execution, obtained by compiling a basic inter-work-group
message-passing idiom, that leads to a prohibited final state.
The vertical order in the figure illustrates the interleaving
of each thread’s instructions and environment transitions,
and we include frequent snapshots of the machine’s state.
In braces, we show the cache entries (using C = CLEAN,
D = DIRTY, V = VALID, and I = INVALID), and in brackets
we show the contents of non-empty synchronisation fifos.
Since our compilation scheme covers only the single device
case, we treat the shared L2 cache as if it is global memory.

Initially, all memory is zeroed and all caches are empty.
If r0 observes 1, then coherence on x dictates that r1 must
observe 42. Thread 2 invalidates its L1 cache, but then the
environment immediately repopulates it with x’s initial value.
Thread 1 (which, being in a different work-group, has its own

Thread 1 (executing L2 cache Thread 2 (executing
storena(x, 42); if(r0 = loadDV,N(y))
storeDV,N(y, 1); ) r1 = loadna(x); ){} {

x 7→ 0
y 7→ 0

} {}
INVL1 WG{}
FETCHL1(x, 0){
x 7→C,V 0

}
ST 42 x{
x 7→D,V 42

} [
x
]

FLUSHL1(x, 42){
x 7→C,V 42

} [
x
] {

x 7→ 42
y 7→ 0

}
FLUL1 WG{
x 7→C,V 42

} [FLUSH
x

]
DEQLOCL1{
x 7→C,V 42

} [
FLUSH

]
DEQMARKERL1{
x 7→C,V 42

}
ST 1 y{
x 7→C,V 42
y 7→D,V 1

}[
y
]

FLUSHL1(x, 42){
x 7→C,V 42
y 7→C,V 1

}[
y
] {

x 7→ 42
y 7→ 1

}
FETCHL1(y, 1){
x 7→C,V 0
y 7→C,V 1

}
LD r0 y
LD r1 x

Figure 4. An execution of inter-work-group message-
passing that leads to the illegal final state {r0 = 1, r1 = 0}

L1 cache) then stores new values for x and y into the L2
cache. When Thread 2 resumes, it fetches the updated y, but
reads the stale x from its own L1 cache.

This bug recurs in non-remote DV-scoped increments (½ in
Tab. 3): the invalidate preceding the INCL2 instruction leads
to a similar message-passing violation.

The inversion of the INVL1 and LD instructions is also
carried through to remote loads (¸) [19: §4.2]. However, an
undocumented detail of the original implementation actually
prevents the bug recurring in this case. Specifically, accesses
to the relevant L2 cacheline during remote loads are stalled
using LKL2 and ULL2 instructions. The problematic execution
depicted in Fig. 4 relies on Thread 2 fetching x after its L1
invalidation and before Thread 1 flushes its new x. Cacheline
locking prevents this from happening, and thus restores
coherence; however, it could lead to unnecessary inter-thread
interference, and is more complicated to reason about than
our proposed lock-free version.



Thread 1 (executing L2 cache Thread 2 (executing
fetch_incWG,N(x);) storeDV,R(x, 2);){

x 7→ 0
}

FETCHL1(x, 0){
x 7→C,V 0

}
FETCHL1(x, 0){
x 7→C,V 0

}
INCL1 x{
x 7→D,V 1

} [
x
]

LKL2 x
FLUL1 WG{
x 7→C,V 0

} [
FLUSH

]
DEQMARKERL1{
x 7→C,V 0

}
ST 2 x{
x 7→D,V 2

} [
x
]

INVL1 DV{
x 7→D,I 1

} [
x
] {

x 7→D,I 2
} [

x
]

ULL2 x
FLUSHL1(x, 2){

x 7→ 2
} {

x 7→C,V 2
} [

x
]

FLUSHL1(x, 1){
x 7→C,I 1

} [
x
] {

x 7→ 1
}

Figure 5. An execution of the program in Example 3 that
leads to the illegal final state {x = 1}

Our proposed scheme avoids these problems by invali-
dating the L1 cache after performing the LD instruction (·)
or the INCL2 instruction (½). In the context of Fig. 4, this
ensures that x is re-fetched after loading y.

5.5.2 Remote Stores Can Violate RMW Atomicity
The original implementation of DV-scoped remote stores (»
in Tab. 3) does not ensure RMW atomicity (axiom Rmw in
Fig. 2) in the presence of a WG-scoped increment in a different
work-group. Figure 5 exhibits an execution, obtained by com-
piling the program in Example 3, that leads to a prohibited
final state.

Both threads begin by fetching x = 0 into their L1 caches.
Thread 1 performs its increment, which leaves its L1 cache
holding x = 1, then thread 2 writes x = 2 into its own L1
cache. Thread 2’s write is flushed to the shared L2 first, and
then overwritten by Thread 1’s write, to leave the final state
of x = 1.

Thus the remote store does not force local increments in
other work-groups to flush their results to the shared L2.

Our proposed scheme rectifies this by including a DV-
scoped flush (before the ST instruction). This alone does not
restore RMW atomicity because a similar problem arises if
Thread 1 fetches x = 0 from the L2 cache after Thread 2
has released its lock on x’s L2 cacheline but before it flushes
x = 2. To deal with this situation, we include a further flush
(this time at WG-scope) after the ST instruction.

6. Proving Soundness
We now prove our remedied implementation of RSP (Tab. 3,
right column) to be sound. The existence of this proof, which
links the high-level OpenCL+RSP memory model (§3) to the
low-level implementation of OpenCL+RSP, lends assurance
that the analysis we performed on the litmus tests and work-
stealing queue in §4 is not vacuous.

6.1 Soundness Statement
The soundness theorem relates three components: the formal
semantics of the OpenCL+RSP language, the formal seman-
tics of the assembly language, and the compilation scheme
for mapping programs for the former to the latter. It essen-
tially states that if Q is the assembly program that results
from compiling an OpenCL+RSP program P , then every ex-
ecution of Q is observationally equivalent to some consistent
execution of P . The precise statement is as follows.

Theorem 1 (Soundness). For an OpenCL+RSP program P :

∀Y ∈ AJcompile P K.∃X ∈ OJP K. X ∼= Y

whereAJ−K returns the set of executions of a given assembly
program, compile applies the mapping in Tab. 3 (right
column), OJ−K returns the set of executions allowed of a
given OpenCL+RSP program, and ∼= captures a notion of
observational equivalence between executions.

OpenCL+RSP executions Recall from §2.2 that the pre-
executions of an OpenCL+RSP program are those that can
be obtained under the assumption of a completely non-
deterministic memory (i.e., loads can obtain any value). We
write O〈−〉 for the set of candidate executions whose pre-
executions match a given OpenCL+RSP program. The set
of executions allowed of a given OpenCL+RSP program
P , written OJP K, is defined as either the set of consistent
executions (when none of them has a race) or the universal
set (otherwise); that is,

OJP K def
=

{
unv if ∃X ∈ Xs. faulty(X)

Xs otherwise

where Xs
def
= {X ∈ O〈P 〉 | consistent(X)}.

Assembly executions The set of executions allowed of a
given assembly program Q, written AJQK, is the set of
all possible complete executions of the program under the
semantics of assembly instructions defined in §5.2. Given
an initial state, each of an assembly program’s completed
executions can be obtained by interleaving program actions
(Tab. 1) and environmental actions (Tab. 2) until all of the
program’s instructions have been dispatched (respecting the
order in each thread) and all of the caches have been flushed
down to global memory. Then, from each of these completed
executions, we can project an execution graph comprising
the memory accesses that were made. It is the set of these
projected execution graphs that are calculated by AJ−K.



In fact, we implement the projection by augmenting the
semantics of instructions so as to transform not only the
current state, but also to accumulate the execution graph.
This execution graph is initially empty, and is extended with
an additional event at each program step. For instance, LD
appends an R event, while INCL1 appends an RMW event.
Ultimately, AJ−K is defined as the set of execution graphs
that accompany terminal states.

Assembly events Recall the OpenCL memory events de-
fined in Fig. 2:

Wna(x, v) | Rna(x, v)
|Ws(x, v) | Rs(x, v) | RMWs(x, v, v

′).
(1)

The events in an assembly execution are broadly similar to the
OpenCL events, except that they omit the scope parameter s
(since the abstraction of scopes does not exist at the assembly
level) and include additional events to represent low-level
memory events that are not exposed in OpenCL:

W(x, v) | R(x, v) | RMW(x, v, v′)
| FlushL1{WG,DV} | InvalL1{WG,DV}
| LockRMW{WG,DV} | UnlockRMW{WG,DV}.

(2)

Since our proposed compilation scheme does away with
cacheline locking, we need not include events to represent
LKL2 and ULL2 instructions.

Execution equivalence The ∼=-relation of Thm. 1 captures
a notion of equivalence between an OpenCL execution and
an assembly execution. Simply put, X ∼= Y holds if X and
Y are isomorphic graphs once the features that are specific
to high-level or low-level executions – scope parameters and
low-level memory events – are erased. We effectively reduce
both X and Y to executions whose event labels are restricted
to the common sub-language of (1) and (2):

W(x, v) | R(x, v) | RMW(x, v, v′).

6.2 Structure of the Proof
For a given program, the axiomatic OpenCL memory model
acts on a set of pre-executions, O〈P 〉, computed by a thread-
local counterpart to the semantics. A faithful model of
OpenCL’s thread-local semantics would be an extensive
work in itself, and is beyond the scope of this paper. Instead,
we follow Batty [4] and simply require our thread-local
semantics to only generate sets, O〈P 〉, that exhibit receptive-
ness; given a pre-execution in O〈P 〉 with a read event r, for
every value v, there is another pre-execution in O〈P 〉 where
all (rf ∪ sb)+ predecessors of r are identical, but r reads
the value v, and the rest of the execution may differ. This
requirement is integral to the calculation of the semantics: if
the candidates in O〈P 〉 do not cover the range of values that
might be read, then executions will be missed by the memory
model. To complement this, we prove completion: that any
consistent rf ∪ sb down-closed prefix of a pre-execution in
O〈P 〉 can be completed to a consistent execution of OJP K.

The theorem describes the behaviour of programs, but
because we are working with an axiomatic memory model,
the proof is most conveniently performed at the level of ex-
ecutions. As a consequence, we must lower some concepts
to the level of executions, in particular the compilation map-
ping and the notion of consistency for assembly executions.
We write comp X Y when the assembly execution Y is a
valid compilation of the OpenCL execution X , according to
the mapping in Tab. 3 (right column). We write consistentA
when the assembly execution Y is permitted by the machine.

Now we present a soundness lemma over executions:

Lemma 1 (Execution soundness). For all OpenCL+RSP
programs P :

∀Xpre ∈ O〈P 〉.∀Y. comp Xpre Y ∧ consistentA Y =⇒
∃X. (pre X = Xpre) ∧X ∈ OJP K ∧X ∼= Y

where pre projects the pre-execution from a candidate execu-
tion, removing mo and rf .

We use this theorem to establish the program-level sound-
ness theorem (Thm. 1) by constructing a Y that satisfies
comp and consistentA in such a way that the set of consis-
tent executions of the compiled program, AJcompile P K, is
equal to the set of consistent assembly executions that comp
matches with the pre-executions of the program.

In establishing execution soundness, we must be able to
prove that a given OpenCL pre-execution can be extended to
a consistent execution. To do so, we must find a modification
order (mo) and a reads-from relation (rf ) that together satisfy
the various consistency axioms. To this end, we further
augment the semantics of assembly programs so that they
construct witnesses for these relations as they execute.

Auxiliary state We augment machine states with two ex-
tra components. We emphasise that these components are
auxiliary (sometimes called ‘ghost’): they do not affect the
operation of the machine, existing only to accumulate useful
information for the proof.

We modify the types of cache entries and global memory
so as to accompany each value with both an event identifier
and a list of event identifiers. That is:

Aux = (rfsource:EventId) × (pmo:EventId list)

CacheEntry = Val ×Aux × (hy:Hygiene) × (fr:Freshness)

Global = Loc ⇀ (Val ×Aux ).

The new rfsource component identifies the event responsible
for writing the currently-held value. Whenever a location is
written to or flushed, this component is overwritten appro-
priately. If the location is subsequently loaded, an rf -edge is
drawn from this event to the loading event.

The new pmo component (for ‘partial modification order’)
identifies the sequence of events that have written to this
cache entry since it was last flushed. In the case of global
memory, which is never flushed, this component records a



history of all the events that have ever written to this location.
Whenever a cache entry is fetched, the newly fetched entry
has its pmo component initialised to the empty list. Whenever
an entry is flushed, the contents of its pmo list is appended
to the end of the pmo list in the deeper cache entry or global
memory location, and its pmo list is then cleared. When an
assembly program completes its execution and all the caches
have been flushed down to global memory, then a witness for
the mo relation can be read off by taking the union of all the
pmo components in global memory.

Consistency It remains to show either that the pre-execution,
combined with the mo and rf relations generated by the ab-
stract machine, is consistent, or that the program was faulty,
in which case every execution is a member of OJP K.

If the program is racy, then the mo and rf relations may be
inconsistent, and these executions must be treated differently.
Consequently, we split the proof into two cases. In one case,
every rf edge on a non-atomic location is coincident with an
hb edge, and there are no increment accesses that race with
badly scoped writes. In the other case, there is at least one rf
edge that is not coincident with a read, or there is a write that
races with an increment that follows it in mo.

We prove the first case, omitting the assumption that Xpre

is a pre-execution of the program P , and then rely on this in
the proof of the second.

Case 1: hb covers non-atomic rf Five consistency axioms
must be established (Fig. 2): Hb, Coh, Rf, Narf, and Rmw.
For each axiom, we relate the forbidden shape to an assembly
execution, and consider the sequences of operations that the
abstract machine might perform to generate that execution.
We collect intermediate lemmas that relate the OpenCL+RSP
candidate execution to the states of the abstract machine.

More precisely, we build a machine execution version of
the happens-before relation, and we show that events related
by hb at the language level correspond to machine-execution
events related by the new relation. We then establish that
when a write or a read precedes an access of the same location
in machine happens-before, then this write, or the write that is
read, in the case of a read, is sure to have propagated through
the memory hierarchy of the other thread prior to its access.
We use this property to establish the axioms of the language
model.

Take for example the axiom Rf. To prove this, we establish
that given an rf edge from a write, w, to a read, r, the write
must have propagated to the reading thread prior to the read,
and then, because of the hb edge, the write must also have
propagated to the writing thread before the write, a contradic-
tion. Then the cycle forbidden by Rf is in fact forbidden by
the compilation scheme over the abstract machine.

This part of the proof is reminiscent of a previous
compilation-scheme proof for C++11 above the Power archi-
tecture [21], so we elide the details for brevity.

Case 2: there is a racy non-atomic read, or increment In
this case, there is either an rf or mo edge that constitutes
a race, but the execution, X , may not be consistent. We
will show that the program is in fact racy by constructing
a consistent execution with a race. First, find all of the
offending edges in X , and find the edge amongst these whose
tail access is added in the earliest reduction step of the abstract
machine, and name its head w and its tail r. Now identify the
set of events in X that precede w and r in (rf ∪sb)+. Restrict
the executions X and Y to these events and w, producing
smaller executions X ′ and Y ′, adding steps of the abstract
machine at the end of Y that flush the caches and complete
the execution.

The new execution X ′ does not contain racy rf or mo
edges of the sort we identified, so we can apply case 1
above to establish consistency of X ′. Now, observing that X ′

contains all (rf ∪ sb)+ predecessors of r in X , we use the
assumption of receptiveness to add the read r, having it read
from a visible write if it is at a non-atomic location, or the
final write in mo if it is an increment. This new execution is
consistent but racy. We then apply the completion lemma to
extend the execution to a complete consistent execution of P
with a race, Xfault , as required.

7. Related Work
There has been a large and sustained effort to understand
both the behaviour of relaxed memory hardware and the
concurrent language interface that ought to be presented to
programmers. The behaviour of relaxed CPUs is relatively
well understood, through formal models of x86 and Power
processors that have been validated through testing [3, 23]
and communication with architects [16, 22]. This line of
work has unearthed bugs in deployed CPUs [2], and unex-
pected behaviours in GPUs that break programming idioms
taught in vendor-endorsed documentation [1]. Our approach
differs from this prior work in that our industrial–academic
collaboration is taking place at the research stage, following
publicly-released descriptions of the architecture [11, 19], so
the bugs we have found can be rectified before the hardware
is deployed.

The PipeCheck tool focuses, as we do, on the correctness
of a microarchitectural implementation [15]. It measures cor-
rectness against an architectural specification, whereas we
compare directly to the programming language specification.
PipeCheck accommodates more microarchitectural features
than those we model in this work, such as instruction reorder-
ing. However, it requires microarchitectures to be specified
axiomatically, and hence is not directly compatible with the
operational model that we use in this work.

Formal modelling of language-level memory models has
led to the discovery of bugs, particularly in the specification
of the C/C++11 memory model [6]. With a formal model of
concurrency in the underlying hardware and the programming
language, it is possible to prove the correctness of compiler



mappings for concurrency primitives, and this has been done
for mappings of C/C++11 to x86 [6] and Power [5, 21]
processors. Our work represents the first correctness proof of
compiler mappings targeting a concrete GPU architecture.

As the understanding of concurrency in existing hardware
and languages has matured, other work has developed new
approaches that expose alternative behaviours to the program-
mer. Rajaram et al. propose a weaker semantics for RMW
accesses in the total store order (TSO) memory model [20], ar-
guing that performance can be improved without affecting the
language memory model. Another theme is to offer the pro-
grammer more control of the locality of synchronisation by
exposing scoped accesses [10, 12, 14, 24]. Our work presents
a new mechanised semantics for remote-scoped accesses, in-
corporated in to a model of OpenCL 2.0 concurrency. As
well as probing the underlying architectural definition, this
validates the new features in the programming model, estab-
lishing that they are efficiently implementable.

8. Conclusion
By formalising remote-scope promotion at both the language
level and for a low-level implementation, we have demon-
strated the value of applying formal techniques early when
designing hardware support for a new concurrency feature.
Our axiomatic memory model, and the corresponding exten-
sions to HERD, allowed us to find bugs in litmus tests and a
work-stealing queue implementation that were designed to
illustrate the semantics and benefits of RSP. Our formalisa-
tion of the proposed implementation of RSP revealed other
issues in the design. By proving that our remedied imple-
mentation is correct with respect to the memory model, we
increase confidence in full-blown GPU designs based on this
implementation proposal.

Our remedied RSP implementation is potentially more
efficient than the original proposal because it does not require
cacheline locking. In future work, we plan to assess this hy-
pothesis through architectural simulation. We plan also to
extend the compilation scheme to a multiple-device setting.
Longer term, we plan to formalise more complex hardware
designs. One promising target is AMD’s QuickRelease tech-
nology [11], parts of which already appear in the design of
RSP. The full QuickRelease scheme, which involves separate
reading and writing caches, and cacheline-specific L1 invali-
dations, involves greater hardware complexity but promises
superior performance. Another topic for future research is
the extension of OpenCL verification tools, such as GPUVer-
ify [7], to handle remote-scope promotion.
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