383 research outputs found

    Comprehensive analysis of the ionospheric response to the largest geomagnetic storms from solar cycle 24 over Europe

    Get PDF
    A multi-instrumental analysis of the meridional ionospheric response is presented over Europe during the two largest ICME-driven geomagnetic storms of solar cycle #24 maximum. Data from 5 European digisonde stations, ground-based Global Navigation Satellite System, Total Electron Content (GNSS TEC), the ratio of the TEC difference (rTEC), as well as Swarm and Thermosphere, Ionosphere, Mesosphere, Energetics and Dynamics (TIMED) satellite observations have been used for the investigation of selected intervals (11–17 November, 2012, and 16–25 March, 2015). The storm evolution is monitored by digisonde foF2 critical frequency (related to the maximum electron density of F2-layer) and GNSS TEC data. Moreover, Global Ultraviolet Imager (GUVI) measurements from the TIMED satellite are used to investigate the changes in the thermospheric O/N2 ratio. Our main focus was on the main phase of the geomagnetic storms, when during the nighttime hours extremely depleted plasma was detected. The extreme depletion is observed in foF2, TEC and rTEC, which is found to be directly connected to the equatorward motion of the midlatitude ionospheric trough (MIT) on the nightside. We demonstrate a method (beside the existing ones) which allows the monitoring of the storm-time evolution of the disturbances (e.g., MIT, SAPS, SED) in the thermosphere-ionosphere-plasmasphere system by the combined analysis of the worldwide digisonde system data (with the drift measurements and the ionospheric layer parameters with 5–15 min cadence), with rTEC and GNSS TEC data, and with the satellite data like Swarm, TIMED/GUVI

    Large-scale, high-density (up to 512 channels) recording of local circuits in behaving animals

    Get PDF
    Monitoring representative fractions of neurons from multiple brain circuits in behaving animals is necessary for understanding neuronal computation. Here we describe a system that allows high channel count recordings from a small volume of neuronal tissue using a lightweight signal multiplexing head-stage that permits free behavior of small rodents. The system integrates multi-shank, high-density recording silicon probes, ultra-flexible interconnects and a miniaturized microdrive. These improvements allowed for simultaneous recordings of local field potentials and unit activity from hundreds of sites without confining free movements of the animal. The advantages of large-scale recordings are illustrated by determining the electro-anatomical boundaries of layers and regions in the hippocampus and neocortex and constructing a circuit diagram of functional connections among neurons in real anatomical space. These methods will allow the investigation of circuit operations and behavior-dependent inter-regional interactions for testing hypotheses of neural networks and brain function

    Pair Production in Strong Fields: The Wigner function approach

    Get PDF
    Abstract: The recent rapid development of laser technology renewed the interest in strong field physics especially in pair production phenomena. As the experiments are approaching the critical field necessary for e+e-pair production in crossed laser beams, the theory continues to develop more realistic models of these extreme fields. With these models we can gain insight into how the observables -such as particle spectra -depend on the field parameters. One such model is the Dirac-Heisenberg-Wigner formalism that describes the time evolution of the one-particle Wignerfunction in strong external fields. We show how this versatile formalism can be used in high energy physics processes and present latest results for inhomogeneous external fields

    Mycotoxin contamination of maize (Zea mays L.) samples in Hungary, 2012–2017

    Get PDF
    Mycotoxin contamination of maize often raises risks for human and animal health. The most frequently detected mycotoxins in maize are trichothecenes, fumonisins, and aflatoxin. A total number of 17,011 maize samples were tested by SGS for their mycotoxin content between 2012 and 2017. The toxin results clearly show that the southern areas of the country had higher levels of toxin contamination than the average. According to the dataset, aflatoxin contamination has become regular but the appearance of fumonisins was also more frequent. Deoxynivalenol toxin accumulation in crops can also reach dangerous levels under favorable ecological conditions. The fluctuation between years and regisons is decisively shaped by the weather conditions. However, the two pathogens with less virulence (Fusarium verticillioides and Aspergillus flavus) must be taken into account and the contribution of insect pests. 72.63% of the total fumonisin concentration was defined as fumonisin B1, 20.34% as fumonisin B2, and 7.03% as fumonisin B3. The correlations between the three fumonisins analogs were higly significant (P = 0.001), and correlation coefficient varied between 0.961 and 0.998 across the six years of evaluation. This is the first complex evaluation of deoxynivalenol, fumonisin, and aflatoxin contamination of maize samples in Hungary

    VHMPID: a new detector for the ALICE experiment at LHC

    Full text link
    This article presents the basic idea of VHMPID, an upgrade detector for the ALICE experiment at LHC, CERN. The main goal of this detector is to extend the particle identification capabilities of ALICE to give more insight into the evolution of the hot and dense matter created in Pb-Pb collisions. Starting from the physics motivations and working principles the challenges and current status of development is detailed.Comment: 4 pages, 6 figures. To be published in EPJ Web of Conference

    Low-frequency cortical activity is a neuromodulatory target that tracks recovery after stroke.

    Get PDF
    Recent work has highlighted the importance of transient low-frequency oscillatory (LFO; <4 Hz) activity in the healthy primary motor cortex during skilled upper-limb tasks. These brief bouts of oscillatory activity may establish the timing or sequencing of motor actions. Here, we show that LFOs track motor recovery post-stroke and can be a physiological target for neuromodulation. In rodents, we found that reach-related LFOs, as measured in both the local field potential and the related spiking activity, were diminished after stroke and that spontaneous recovery was closely correlated with their restoration in the perilesional cortex. Sensorimotor LFOs were also diminished in a human subject with chronic disability after stroke in contrast to two non-stroke subjects who demonstrated robust LFOs. Therapeutic delivery of electrical stimulation time-locked to the expected onset of LFOs was found to significantly improve skilled reaching in stroke animals. Together, our results suggest that restoration or modulation of cortical oscillatory dynamics is important for the recovery of upper-limb function and that they may serve as a novel target for clinical neuromodulation

    Forward-backward multiplicity correlations in pp collisions at √s=0.9, 2.76 and 7 TeV

    Get PDF
    The strength of forward-backward (FB) multiplicity correlations is measured by the ALICE detector in proton-proton (pp) collisions at √s = 0.9, 2.76 and 7 TeV. The measurement is performed in the central pseudorapidity region (| η| 0.3 GeV/c. Two separate pseudorapidity windows of width ( δ η) ranging from 0.2 to 0.8 are chosen symmetrically aroundη = 0. The multiplicity correlation strength (bcorr) is studied as a function of the pseudorapidity gap ( ηgap) between the two windows as well as the width of these windows. The correlation strength is found to decrease with increasing ηgap and shows a non-linear increase with δ η. A sizable increase of the correlation strength with the collision energy, which cannot be explained exclusively by the increase of the mean multiplicity inside the windows, is observed. The correlation coefficient is also measured for multiplicities in different configurations of two azimuthal sectors selected within the symmetric FB η-windows. Two different contributions, the short-range (SR) and the long-range (LR), are observed. The energy dependence of bcorr is found to be weak for the SR component while it is strong for the LR component. Moreover, the correlation coefficient is studied for particles belonging to various transverse momentum intervals chosen to have the same mean multiplicity. Both SR and LR contributions to bcorr are found to increase with pT in this case. Results are compared to PYTHIA and PHOJET event generators and to a string-based phenomenological model. The observed dependencies of bcorr add new constraints on phenomenological models

    Measurement of electrons from semileptonic heavy-flavor hadron decays in pp collisions at s =2.76TeV

    Get PDF
    The pT-differential production cross section of electrons from semileptonic decays of heavy-flavor hadrons has been measured at mid-rapidity in proton-proton collisions at √s = 2.76 TeV in the trans- verse momentum range 0.5 < pT < 12 GeV/c with the ALICE detector at the LHC. The analysis was performed using minimum bias events and events triggered by the electromagnetic calorime- ter. Predictions from perturbative QCD calculations agree with the data within the theoretical and experimental uncertainties
    corecore