1,507 research outputs found

    Detectors and Focal Plane Modules for Weather Instruments

    Get PDF
    Weather satellite instruments require detectors with a variety of wavelengths ranging from the visible to VLWIR. The Cross-track infrared Sounder (CrIS) is a Polar Orbiting interferometric sensor that measures earth radiances at high spectral resolution, using the data to provide pressure, temperature and moisture profiles of the atmosphere. The pressure, temperature and moisture sounding data are used in weather prediction models that track storms, predict levels of precipitation etc. The CrIS instrument contains SWIR (lambda(sub c) (is) approximately 5 micrometers at 98 K), MWIR (lambda(sub c) (is) approximately 9 micrometers at 98 K) and LWIRs (lambda(sub c) (is) approximately 15.4 m at 81 K) bands in three Focal Plane Array Assemblies (FPAAs). CrIS detectors are 850 micrometers diameter detectors with each FPAA consisting of nine photovoltaic detectors arranged in a 3 x 3 pattern. Molecular beam epitaxy (MBE)-grown Hg1-xCdxTe material are used for the detectors fabricated in a modified Double Layer Planar Heterostructure (DLPH) architecture. Each detector has an accompanying cold preamplifier. SWIR and MWIR FPAAs operate at 98 K and the LWIR FPAA at 81 K, permitting the use of passive radiators to cool the detectors. D* requirements at peak 14.01 micrometers wavelength are greater than 5.0E+10 Jones for LWIR, greater than 7.5E+10 Jones at 8.26 micrometers for MWIR and greater than 3.0E+11 Jones at peak 4.64 micrometers wavelength for SWIR. All FPAAs exceeded the D* requirements. Measured mean values for the nine photodiodes in each of the LWIR, MWIR and SWIR FPAAs are D* = 5.3 x 10(exp 10) cm-Hz1/2/W at 14.0 micrometers, 9.6 x 10(exp 10) cm-Hz1/2/W at 8.0 micrometers and 3.4 x 10(exp 11) cm-Hz1/2/W at 4.64 micrometers

    Detectors and Focal Plane Modules for Weather Satellites

    Get PDF
    Weather satellite instruments require detectors with a variety of wavelengths ranging from the visible to VLWIR. One of the remote sensing applications is the geostationary GOES-ABI imager covering wavelengths from the 450 to 490 nm band through the 13.0 to 13.6 micron band. There are a total of 16 spectral bands covered. The Cross-track infrared Sounder (CrIS) is a Polar Orbiting interferometric sensor that measures earth radiances at high spectral resolution, using the data to provide pressure, temperature and moisture profiles of the atmosphere. The pressure, temperature and moisture sounding data are used in weather prediction models that track storms, predict levels of precipitation etc. The CrIS instrument contains SWIR (lamba(sub c) approximately 5 micron at 98K), MWIR (lambda(sub c) approximately 9 micron at 98K) and LWIRs (lamba(sub c) approximately 15.5 micron at 81K) bands in three Focal Plane Array Assemblies (FPAAs). GOES-ABI contains three focal plane modules (FPMs), (i) a visible-near infrared module consisting of three visible and three near infrared channels, (ii) a MWIR module comprised of five channels from 3.9 micron to 8.6 micron and (iii) a 9.6 micron to 13.3 micron, five-channel LWIR module. The VNIR FPM operates at 205 K, and the MWIR and LWIR FPMs operate at 60 K. Each spectral channel has a redundant array built into a single detector chip. Switching is thus permitted from the primary selected array in each channel to the redundant array, given any degradation in performance of the primary array during the course of the mission. Silicon p-i-n detectors are used for the 0.47 micron to 0.86 micron channels. The thirteen channels above 1 micron are fabricated in various compositions of Hg1-xCdxTe, and in this particular case using two different detector architectures. The 1.38 micron to 9.61 micron channels are all fabricated in Hg1-xCdxTe grown by Liquid Phase Epitaxy (LPE) using the HDVIP detector architecture. Molecular beam epitaxy (MBE)-grown Hg1-xCdxTe material are used for the LWIR 10.35 micron to 13.3 micron channels fabricated in Double layer planar heterostructure (DLPH) detectors. This is the same architecture used for the CrIS detectors CrIS detectors are 850 micron diameter detectors with each FPAA consisting of nine photovoltaic detectors arranged in a 3 x 3 pattern. Each detector has an accompanying cold preamplifier. SWIR and MWIR FPAAs operate at 98 K and the LWIR FPAA at 81 K, permitting the use of passive radiators to cool the detectors. D* requirements at peak wavelength are 5.0E+10 Jones for LWIR, 9.3E+10 Jones for MWIR and 3.0E+11 Jones for SWIR. All FPAAs exceeded the D* requirements. Measured mean values for the nine photodiodes in each of the LWIR, MWIR and SWIR FPAAs are D* = 5.3 x 10(exp 10) cm-Hz(exp 1/2)/W at 14.0 micron, 1.0 x 10(exp 11) cm-Hz(exp 1/2)/W at 8.0 micron and 3.1 x 10(exp 11) cm-Hz(exp 1/2)/W at 4.64 micron

    Double Exponential Instability of Triangular Arbitrage Systems

    Full text link
    If financial markets displayed the informational efficiency postulated in the efficient markets hypothesis (EMH), arbitrage operations would be self-extinguishing. The present paper considers arbitrage sequences in foreign exchange (FX) markets, in which trading platforms and information are fragmented. In Kozyakin et al. (2010) and Cross et al. (2012) it was shown that sequences of triangular arbitrage operations in FX markets containing 4 currencies and trader-arbitrageurs tend to display periodicity or grow exponentially rather than being self-extinguishing. This paper extends the analysis to 5 or higher-order currency worlds. The key findings are that in a 5-currency world arbitrage sequences may also follow an exponential law as well as display periodicity, but that in higher-order currency worlds a double exponential law may additionally apply. There is an "inheritance of instability" in the higher-order currency worlds. Profitable arbitrage operations are thus endemic rather that displaying the self-extinguishing properties implied by the EMH.Comment: 22 pages, 22 bibliography references, expanded Introduction and Conclusion, added bibliohraphy reference

    Correlated multiplexity and connectivity of multiplex random networks

    Full text link
    Nodes in a complex networked system often engage in more than one type of interactions among them; they form a multiplex network with multiple types of links. In real-world complex systems, a node's degree for one type of links and that for the other are not randomly distributed but correlated, which we term correlated multiplexity. In this paper we study a simple model of multiplex random networks and demonstrate that the correlated multiplexity can drastically affect the properties of giant component in the network. Specifically, when the degrees of a node for different interactions in a duplex Erdos-Renyi network are maximally correlated, the network contains the giant component for any nonzero link densities. In contrast, when the degrees of a node are maximally anti-correlated, the emergence of giant component is significantly delayed, yet the entire network becomes connected into a single component at a finite link density. We also discuss the mixing patterns and the cases with imperfect correlated multiplexity.Comment: Revised version, 12 pages, 6 figure

    Novel conopeptides of largely unexplored Indo Pacific <i>Conus</i> sp.

    Get PDF
    Cone snails are predatory creatures using venom as a weapon for prey capture and defense. Since this venom is neurotoxic, the venom gland is considered as an enormous collection of pharmacologically interesting compounds having a broad spectrum of targets. As such, cone snail peptides represent an interesting treasure for drug development. Here, we report five novel peptides isolated from the venom of Conus longurionis, Conus asiaticus and Conus australis. Lo6/7a and Lo6/7b were retrieved from C. longurionis and have a cysteine framework VI/VII. Lo6/7b has an exceptional amino acid sequence because no similar conopeptide has been described to date (similarity percentage C. asiaticus, has a typical framework III Cys arrangement, classifying the peptide in the M-superfamily. Asi14a, another peptide of C. asiaticus, belongs to framework XIV peptides and has a unique amino acid sequence. Finally, AusB is a novel conopeptide from C. australis. The peptide has only one disulfide bond, but is structurally very different as compared to other disulfide-poor peptides. The peptides were screened on nAChRs, NaV and KV channels depending on their cysteine framework and proposed classification. No targets could be attributed to the peptides, pointing to novel functionalities. Moreover, in the quest of identifying novel pharmacological targets, the peptides were tested for antagonistic activity against a broad panel of Gram-negative and Gram-positive bacteria, as well as two yeast strains

    Atlas construction and spatial normalisation to facilitate radiation-induced late effects research in childhood cancer

    Get PDF
    Reducing radiation-induced side effects is one of the most important challenges in paediatric cancer treatment. Recently, there has been growing interest in using spatial normalisation to enable voxel-based analysis of radiation-induced toxicities in a variety of patient groups. The need to consider three-dimensional distribution of doses, rather than dose-volume histograms, is desirable but not yet explored in paediatric populations. In this paper, we investigate the feasibility of atlas construction and spatial normalisation in paediatric radiotherapy. We used planning computed tomography (CT) scans from twenty paediatric patients historically treated with craniospinal irradiation to generate a template CT that is suitable for spatial normalisation. This childhood cancer population representative template was constructed using groupwise image registration. An independent set of 53 subjects from a variety of childhood malignancies was then used to assess the quality of the propagation of new subjects to this common reference space using deformable image registration (i.e., spatial normalisation). The method was evaluated in terms of overall image similarity metrics, contour similarity and preservation of dose-volume properties. After spatial normalisation, we report a dice similarity coefficient of 0.95±0.05, 0.85±0.04, 0.96±0.01, 0.91±0.03, 0.83±0.06 and 0.65±0.16 for brain and spinal canal, ocular globes, lungs, liver, kidneys and bladder. We then demonstrated the potential advantages of an atlas-based approach to study the risk of second malignant neoplasms after radiotherapy. Our findings indicate satisfactory mapping between a heterogeneous group of patients and the template CT. The poorest performance was for organs in the abdominal and pelvic region, likely due to respiratory and physiological motion and to the highly deformable nature of abdominal organs. More specialised algorithms should be explored in the future to improve mapping in these regions. This study is the first step toward voxel-based analysis in radiation-induced toxicities following paediatric radiotherapy

    Pterodactyl: Trade Study for an Integrated Control System Design of a Mechanically Deployable Entry Vehicle

    Get PDF
    This paper presents the trade study method used to evaluate and downselect from a set of guidance and control (G&C) system designs for a mechanically Deployable Entry Vehicle (DEV). The Pterodactyl project was prompted by the challenge to develop an effective G&C system for a vehicle without a backshell, which is the case for DEVs. For the DEV, the project assumed a specific aeroshell geometry pertaining to an Adaptable, Deployable Entry and Placement Technology (ADEPT) vehicle, which was successfully developed by NASAs Space Technology Mission Directorate (STMD) prior to this study. The Pterodactyl project designed three different entry G&C systems for precision targeting. This paper details the Figures of Merit (FOMs) and metrics used during the course of the projects G&C system assessment. The relative importance of the FOMs was determined from the Analytic Hierarchy Process (AHP), which was used to develop weights that were combined with quantitative design metrics and engineering judgement to rank the G&C systems against one another. This systematic method takes into consideration the projects input while simultaneously reducing unintentional judgement bias and ultimately was used to select a single G&C design for the project to pursue in the next design phase

    Patch repair of congenital diaphragmatic hernia is not at risk of poor outcomes

    Get PDF
    Purpose: Recurrence of congenital diaphragmatic hernia (CDH) was retrospectively evaluated after correction with or without a patch in an institution where tension-free repair is advocated. // Methods: Demographics and outcomes of patients with a postero-lateral CDH repaired (2000-2016) were analysed (univariate tests and binary logistic regression adjusting for time since start of study, gender, defect side, liver herniation, patch, surgical approach, absence of postero-lateral rim and length of follow-up). // Results: Of 203 patients, 107 received a patch (P), and 96 were not patched (NP). Groups were not different for gestational age birthweight, gender, defect side and minimally-invasive approach rate. Preoperative ECMO incidence (P:29.9% vs. NP:2.1%, p<0.01), liver herniation (P:57.0% vs. NP:22.9%, p<0.01) and absence of a postero-lateral rim (P:61.7% vs. NP:8.3%, p<0.01) were higher in the P group. The mortality rate was 10.8% (P:15.0% vs. NP:6.2%, p=0.07). Recurrence was not different (P:9.3% vs. NP:4.2%, p=0.15). Multivariate analysis showed that recurrence was higher after thoracoscopy compared to open (OR=12.2 [2.2-68], p<0.01); neither the use of patch (OR=2.3, [0.5-10.4], p=0.28) nor any other factors were associated with recurrence. // Conclusion: In this single centre series where tension-free repair was advocated, patch repair of CDH was not associated with higher recurrence, though access route was

    Adaptive modulation in Ni2Mn1.4In0.6 magnetic shape memory Heusler alloy

    Full text link
    The origin of incommensurate structural modulation in Ni-Mn based Heusler type magnetic shape memory alloys (MSMAs) is still an unresolved issue inspite of intense focus on this due to its role in the magnetic field induced ultra-high strains. In the archetypal MSMA Ni2MnGa, the observation of non-uniform displacement of atoms from their mean positions in the modulated martensite phase, premartensite phase and charge density wave as well as the presence of phason broadening of satellite peaks have been taken in support of the electronic instability model linked with a soft acoustic phonon. We present here results of a combined high resolution synchrotron x-ray powder diffraction (SXRPD) and neutron powder diffraction (NPD) study on Ni2Mn1.4In0.6 using (3+1)D superspace group approach, which reveal not only uniform atomic displacements in the modulated structure of the martensite phase with physically acceptable ordered magnetic moments in the antiferromagnetic phase at low temperatures but also the absence of any premartensite phase and phason broadening of the satellite peaks. Our HRTEM studies and first principles calculations of the ground state also support uniform atomic displacements predicted by powder diffraction studies. All these observations suggest that the structural modulation in the martensite phase of Ni2Mn1.4In0.6 MSMA can be explained in terms of the adaptive phase model. The present study underlines the importance of superspace group analysis using complimentary SXRPD and NPD in understanding the physics of the origin of modulation as well as the magnetic and the modulated ground states of the Heusler type MSMAs. Our work also highlights the fact that the mechanism responsible for the origin of modulated structure in different Ni-Mn based MSMAs may not be universal and it must be investigated thoroughly in different alloy compositions

    Mass transfer dynamics in double degenerate binary systems

    Full text link
    We present a numerical study of the mass transfer dynamics prior to the gravitational wave-driven merger of a double white dwarf system. Recently, there has been some discussion about the dynamics of these last stages, different methods seemed to provide qualitatively different results. While earlier SPH simulations indicated a very quick disruption of the binary on roughly the orbital time scale, more recent grid-based calculations find long-lived mass transfer for many orbital periods. Here we demonstrate how sensitive the dynamics of this last stage is to the exact initial conditions. We show that, after a careful preparation of the initial conditions, the reportedly short-lived systems undergo mass transfer for many dozens of orbits. The reported numbers of orbits are resolution-biased and therefore represent only lower limits to what is realized in nature. Nevertheless, the study shows convincingly the convergence of different methods to very similar results.Comment: 5 pages, 3 figures, for associated movie files, see http://pandora.jacobs-university.de/~mdan/WD_coalescences.htm, to appear in Journal of Physics Conference Proceedings for the 16th European White Dwarf Worksho
    corecore