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ABSTRACT 

 

Weather satellite instruments require detectors with a variety of wavelengths ranging from the visible to VLWIR. One of 

the remote sensing applications is the geostationary GOES-ABI imager covering wavelengths from the 450 to 490 nm 

band through the 13.0 to 13.6 m band. There are a total of 16 spectral bands covered. The Cross-track infrared Sounder 

(CrIS) is a Polar Orbiting interferometric sensor that measures earth radiances at high spectral resolution, using the data 

to provide pressure, temperature and moisture profiles of the atmosphere. The pressure, temperature and moisture 

sounding data are used in weather prediction models that track storms, predict levels of precipitation etc. The CrIS 

instrument contains SWIR (c ~ 5 m at 98K), MWIR (c ~ 9 m at 98K) and LWIRs (c ~ 15.5 m at 81K) bands in 

three Focal Plane Array Assemblies (FPAAs). 

 

GOES-ABI contains three focal plane modules (FPMs), (i) a visible-near infrared module consisting of three visible and 

three near infrared channels, (ii) a MWIR module comprised of five channels from 3.9 m to 8.6 m and (iii) a 9.6 m to 

13.3 m, five-channel LWIR module. The VNIR FPM operates at 205 K, and the MWIR and LWIR FPMs operate at 60 

K. Each spectral channel has a redundant array built into a single detector chip. Switching is thus permitted from the 

primary selected array in each channel to the redundant array, given any degradation in performance of the primary array 

during the course of the mission. Silicon p-i-n detectors are used for the 0.47 m to 0.86 m channels. The thirteen 

channels above 1 m are fabricated in various compositions of Hg1-xCdxTe, and in this particular case using two different 

detector architectures. The 1.38 m to 9.61 m channels are all fabricated in Hg1-xCdxTe grown by Liquid Phase Epitaxy 

(LPE) using the HDVIP detector architecture. Molecular beam epitaxy (MBE)-grown Hg1-xCdxTe material are used for 

the LWIR 10.35 m to 13.3 m channels fabricated in Double layer planar heterostructure (DLPH) detectors. This is the 

same architecture used for the CrIS detectors 

 

CrIS detectors are 850 m diameter detectors with each FPAA consisting of nine photovoltaic detectors arranged in a 3 x 

3 pattern. Each detector has an accompanying cold preamplifier. SWIR and MWIR FPAAs operate at 98 K and the 

LWIR FPAA at 81 K, permitting the use of passive radiators to cool the detectors. D* requirements at peak wavelength 

are ≥ 5.0E+10 Jones for LWIR, ≥ 9.3E+10 Jones for MWIR and ≥ 3.0E+11 Jones for SWIR. All FPAAs exceeded the 

D* requirements. Measured mean values for the nine photodiodes in each of the LWIR, MWIR and SWIR FPAAs are 

D* = 5.3 x 1010 cm-Hz1/2/W at 14.0 m, 1.0 x 1011 cm-Hz1/2/W at 8.0 m and 3.1 x 1011 cm-Hz1/2/W at 4.64 m.  

 

1.0 Introduction 
 

GOES-ABI is the next generation of geostationary weather satellite imager instruments. The ABI instrument utilizes 

detector arrays hybridized to ROICs with multiple FPAs assembled on a FPM. ABI has three Focal Plane modules 

(FPMs) cooled with an active cryo-cooler. DRS is contracted to design, manufacture, test, and deliver FPMs to Harris, 

the ABI instrument prime contractor integrator. The three focal plane modules (FPMs), (i) a visible-near infrared module 

consisting of three visible and three near infrared channels, (ii) a MWIR module comprised of five channels from 3.9 m 

to 8.6 m and (iii) a 9.6 m to 13.3 m, five-channel LWIR module. The detectors were manufactured in silicon for the 

three sub-1 m channels. The thirteen channels above 1 m were fabricated in various compositions of Hg1-xCdxTe, and 

in this particular case using two different detector architectures. The 1.38 m to 9.61 m channels were all fabricated in 
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Hg1-xCdxTe using the HDVIP1,2 detector architecture. Double layer planar heterostructure3-9 (DLPH) detectors fabricated 

in molecular beam epitaxy (MBE)-grown Hg1-xCdxTe material were used for the LWIR 10.35 m to 13.3 m channels. 

Silicon p-i-n detectors were used for the 0.47 m to 0.86 m channels. 

 

The CrIS instrument is a three-spectral-band Fourier Transform infrared (FTIR) spectrometer designed to measure 

vertical atmospheric profiles of temperature, moisture, and pressure. CrIS employs 850-m-diameter DLPH Lateral 

Collection Dectector architecture photovoltaic detectors without ROICs, but each detector is coupled to a separate cold 

JFET preamplifier and associated passive electronic elements. The detector/amplifier chain requires high performance 

and linear photoresponse. Photovoltaic mercury cadmium telluride (HgCdTe) detectors coupled with the right amplifier 

provide both the near-theoretical background-limited infrared performance (BLIP) and the required linear response and 

are therefore desirable for interferometric infrared sounders such as CrIS. The CrIS instrument uses Focal Plane Array 

Assemblies (FPAAs) for the three spectral bands: SWIR, MWIR, and LWIR. Each FPAA comprises nine separate 

detectors arranged in a 3 x 3 pattern  

 

This paper outlines the data collected from both GOES-ABI FPAs and CrIS detectors and all three FPAAs (SWIR, 

MWIR & LWIR). The focus of this paper, however, is the LWIR FPAA, the most stressing of the three colors. Each 

assembly is tested separately in the CrIS dedicated nitrogen heli-tran dewar.  

 

2.0 Requirements 

 
2.1 GOES-ABI 

 

The array formats and basic FPA performance parameters are listed in table I for the 16 spectral channels on ABI.  

Where possible, to save cost, some channels use a common FPA with a different integration capacitor setting or AR 

coating. Detector element sizes of the arrays vary depending on each spectral channel’s ground sample distance (GSD) 

requirements.  In all cases column redundancy was employed to maintain 100% row operability on all channels. To 

minimize the effects of clock coupled noise, the master clock frequencies were chosen to be multiples of each other such 

that all the FPAs are running synchronously.  All FPA channels have a single analog output, with the exception of the 

064 ch which has 5 parallel outputs due to the higher resolution and data rate requirements. 

Table I:  GOES FPA Design Parameters and Performance Characteristic 
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elements columns none microns none ph/cm2/sec ph/cm2/sec Kelvin ohm cm
2 Amps V/e- usec #

N/S Value E/W Value Cut Off Value

047 676 3 Si 24.0 24.0 0.90 0.60 1.54E+14 2.43E+11 205 2.00E+06 5.09E-14 1.89E-06 873 1

064 1460 3 Si 11.0 13.0 0.90 0.70 4.92E+14 1.06E+12 205 2.00E+06 1.26E-14 3.55E-06 422 5

086 676 3 Si 24.0 24.0 0.90 0.50 1.41E+14 2.32E+11 205 2.00E+06 5.09E-14 2.04E-06 873 1

138 372 6 MCT 44.0 54.0 2.45 0.60 3.12E+13 4.57E+10 205 6.00E+05 1.73E-13 1.12E-06 1774 1

161 676 6 MCT 24.0 24.0 2.45 0.60 9.55E+13 1.77E+11 205 6.00E+05 4.18E-14 2.97E-06 871 1

225 372 6 MCT 44.0 54.0 2.45 0.60 2.02E+13 3.10E+10 205 6.00E+05 1.73E-13 1.74E-06 1774 1

064 LL 1460 3 Si 11.0 13.0 0.90 0.70 2.46E+13 3.08E+11 205 2.00E+06 1.26E-14 3.55E-06 422 5

390 332 6 MCT 50.0 54.0 5.20 0.60 1.51E+13 2.76E+10 60 2.00E+08 4.33E-16 2.46E-07 1766 1

618 332 6 MCT 50.0 54.0 9.50 0.60 6.92E+14 1.91E+11 60 1.00E+04 8.65E-12 5.60E-08 1766 1

695 332 6 MCT 50.0 54.0 9.50 0.60 4.52E+14 1.64E+11 60 1.00E+04 8.65E-12 8.09E-08 1766 1

734 332 6 MCT 50.0 54.0 9.50 0.60 2.79E+14 1.50E+11 60 1.00E+04 8.65E-12 1.04E-07 1766 1

850 332 6 MCT 50.0 54.0 9.50 0.60 6.92E+14 2.19E+11 60 1.00E+04 8.65E-12 3.35E-08 1766 1

961 332 6 MCT 50.0 54.0 10.80 0.60 7.62E+14 2.20E+11 60 1.40E+03 6.18E-11 5.60E-08 1766 1

1035 408 6 MCT 40.0 36.0 12.80 0.55 8.84E+14 3.98E+11 60 2.40E+02 1.92E-10 5.57E-08 1772 1

1120 408 6 MCT 40.0 36.0 12.80 0.55 1.81E+15 5.81E+11 60 2.40E+02 1.92E-10 3.55E-08 1772 1

1230 408 6 MCT 40.0 36.0 14.10 0.55 1.83E+15 6.45E+11 60 4.92E+01 1.48E-09 2.47E-08 1772 1

1330 408 6 MCT 40.0 36.0 15.00 0.55 9.91E+14 9.12E+11 60 2.00E+01 3.65E-09 2.89E-08 1772 1
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 Each FPA channel has a corresponding narrow band filter to define the channel spectral characteristics. The channel 

designations are the center wavelength of each spectral channel.  The spectral transmission, bandpass, shape of the 

spectral band edges and out of band rejection of the filters are all strictly specified to the filter vendors. The cutoff 



wavelength were all chosen to be long enough not to impinge on the spectral filter cutoff, insuring high quantum 

efficiency over the entire spectral band.  

 

2.2 CrIS 

The CrIS spectral bands and operating temperatures of interest determine the HgCdTe material growth parameters. Table 

II is a listing of the baseline material parameters and the flowdown detector performance required at the operating 

temperature for each wavelength detector fabricated in that material.   

Table II. CrIS detector performance requirements 

Parameter Units SWIR MWIR LWIR 

Spectral Band m 3.92 – 4.64 5.71 – 8.26 9.13 – 15.38 

Operating T K 98 98 81 

Detector architecture  p-on-n 

DLPH 

p-on-n 

DLPH 

p-on-n 

DLPH 

Cutoff wavelength c m > 4.96 > 8.92 > 15.3 

Peak wavelength p m 4.64 8.26 14.01 

Ro  > 1.0 x 109 > 1.4 x 104 > 1.0 x 102 

Id @  

Vd = -0.1 V 

Amps < 1.0 x 10-9 < 6.0 x 10-7 < 7.0 x 10-5 

AR-coated QE  > 0.75 > 0.72 > 0.6 

Detector diameter m 890 ± 30 870 ± 20 865 ± 20 

 

3.0 Detector Technology 

 
ABI utilizes three detector technologies: Si pin detectors for the visible bands, HDVIP® MCT detectors for the 138 - 

961 bands and DLPH MBE MCT detectors for the 1035-1330 bands (see table 1). The CrIS program uses the DLPH 

MBE MCT detectors. Cross sections of the different detector architectures are displayed in figure 1. Each detector 

technology has its advantages and limitations. The detector technology best suited for each spectral channel was chosen 

from a performance, cost and reliability standpoint.   

 

 
Figure 1:  Detector Technologies  
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The Si visible pin detector manufactured by DRS Sensors & Targeting Systems is used for the 047, 064 and 086 

channels. The array consists of a Si pin detector mated to a CMOS ROIC using indium bump hybridization. Three array 

formats 676 x 3, 1460 x 3 and 676 x 3 for the 047, 064 and 086 channels respectively share a common Si Substrate.  The 

arrays are spaced out adequately to allow discrete bandpass filters to be mounted above each array and allow room for 

blackened baffles to be located in between each array channel for stray light control. The resultant detector array is a Si 

chip that has overall dimensions ~ 14 mm x 18 mm. The detector elements are 24 x 24 m for the 047 and 086 channels, 

while the 064 ch has 11 x 13m detectors. The detector thickness is thinned to 22 m to maximize the 047 ch MTF, since 

470 nm photons are all absorbed near the detector back surface, while still providing good QE for the 064 and 086 ch 

whose photons have deeper penetration depth into the Si.  The detectors are fully depleted, providing high QE and near 

theoretical MTF performance in all three color bands. A multi-layer broadband AR coating was used to maintain high QE 

and low reflectance across all three spectral bands.   

 

 The CMOS ROIC for each channel is independent and has logic to select the best detector from 1 of 3 columns. The best 

performing detector for each row is connected through a FET to each row’s unit cell circuitry and read out through a 

single analog output for the 047 and 086 channels, while the high resolution 064 ch has 5 parallel outputs due to the 

larger format and higher data rate. Our design architecture provides superior crosstalk, blooming and MTF performance. 

 

3.2  HDVIP® SWIR – LWIR MCT Detectors 

 

The SWIR detectors (1.38 m, 1.61 m and 2.25 m channels), all the MWIR band channels (3.90 m , 6.18 m, 6,95 

m, 7.34 m and 8.50 m) and the 9.61 m channel in the LWIR band utilize DRS’ HDVIP® MCT detectors.1,2  These 

detectors implement a cylindrical vertical photodiode architecture with a thru hole via to make connection to the ROIC 

below. The detector is a thinned, front side illuminated architecture that has high QE and fill factor and, low dark current.  

Thickness for the SWIR arrays is ~ 6m and ~ 10m for the MWIR and LWIR arrays. The inclusion of a surface implant 

for the larger pitch designs improves MTF and crosstalk and was implemented in the flight design. 

 

3.3 MBE DLPH VLWIR Detectors 

The baseline detector architecture for the 1035 to 1330 channels is a p-on-n double layer planar heterostructure (DLPH) 

diode fabricated by Teledyne Imaging Systems. A DLPH device cross section schematic is shown in Figure 1. Benefits of 

the DLPH2-9 architecture, include a reduction in surface generation-recombination and tunneling currents, and an increase 

in total dose radiation hardness, both of which are essential detector attributes for remote sensing applications. Those 

benefits are realized by incorporating a buried narrow-bandgap active layer in the DLPH architecture. The baseline CrIS 

detector architecture is also p-on-n double layer planar heterostructure (DLPH) lateral collection diode. MBE is used to 

grow the appropriate bandgap n-type Hg1-xCdxTe on lattice matched CdZnTe. Wafer material is grown with wider 

bandgap cap layers, the subsequent detector architecture translating into the DLPH architecture. 850 m diameter 

detectors are manufactured using the lateral collection diode (LCD) architecture10 to reduce the probability of a 

performance degrading defect11 intersecting the detector p/n junction.  

 

4.0 Module Design 

 

4.1 GOES-ABI Focal Plane Module (FPM) 

 

DRS’ design approach for ABI was to design each of the three module types with similar construction. An exploded view 

of the MWIR Module in Figure 2 shows the critical pieces which include an FPM base assembly, modular FPA mounting 

blocks attached to the base with screws to allow for FPA rework/replacement if necessary, an integrated constantan flex 

cable assembly consisting of two adhesively bonded flex cables per redundant side of the module, decoupling filter 

capacitors on the rigid end of the flex for bias supply filtering, temp sensors for temperature monitoring, 5 FPAs each 

adhesively bonded to its own mounting block (for the MWIR module shown), a 2 piece filter frame baffle assembly 



containing 5 discrete narrowband filters, and a cover shield to protect the module during handling and instrument 

integration. 

 

 

Figure 2.  Exploded View of ABI MWIR FPM 

The MWIR and LWIR modules have 5 spectral channels for each module and the VNIR module has 6 spectral channels.  

The linear arrays within each module are precision aligned parallel to one another, with all three modules bore sighted to 

view the same ground swath through the same telescope and scan mirror assembly. Within the optical beam path of the 

instrument, each module color band is separated by dichroic beam splitters.   

The module construction involves attachment of the mounting plates to the base assembly with screws. The FPAs are 

then precision mounted to the mounting plates using an adhesive bond relative to a datum on the module. There are FPA 

alignment tolerances for x, y and z placement as well as rotational and tilt alignment tolerances. The constantan flex 

cables with filter capacitors installed are then precision aligned to the base assembly and attached with screws. The FPAs 

are wirebonded to the flex cable and 100% pull tested to verify bond integrity. Temperature sensors are also mounted to 

the base assembly and electrically connected via the flex cable. Baseline testing is performed to verify all FPAs are 

operating as expected. Figure 3 shows the VNIR, MWIR and LWIR FM1 modules at various steps in the module 

assembly process. 
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  Figure 3: ABI FM1 VNIR, MWIR and LWIR Modules at various stages of Integration 

 

4.2 CrIS Focal Plane Array Assembly (FPAA) 

 
The Flight configuration for the CrIS Detector Preamplifier Module (DPM) consists of three spectrally separate (SWIR, 

MWIR and LWIR) FPAAs, three signal flex cable assemblies, a warm signal flex cable, vacuum bulk head assembly, and 

the warm electronics circuit card assemblies (CCAs) as shown in figure 4. The photodiodes are coupled to a differential 

J-FET buffered, resistive feedback, transimpedance amplifier (RTIA). The RTIA provides the necessary gain for the 

circuit, and the J-FET differential buffers provide low noise, current to voltage conversion at constant output impedance. 

Each FPAA contains a 3 x 3 array of nine 850 m diameter photovoltaic detectors, each driving its own RTIA, with their 

associated cold electronics, detector optics assembly, and two flex cable assemblies with interface connectors. The 

FPAAs (detector arrays, detector optics assemblies, JFET buffer and feedback resistor portions of the transimpedance 

preamplifier, and flex cable assemblies) are cooled by the detector cooler module in their final configuration. The 

cryogenic portions of the DPM (FPAAs, and Signal Flex Cable Assemblies) mate to the ambient temperature portions of 

the DPM (warm signal flex cable assembly and the ambient temperature portions of the transimpedance amplifier, 

mounted within the CCAs) through the vacuum bulk head assembly mounted on the detector cooler assembly housing. 

The FPAA assembly is connected to the warm electronics via a constantan cable and vacuum feedthru hermetic 

connector. Each FPAA has its own Circuit Card Assembly (CCA) that contains a warm amplifier and the second stage 

300Hz high pass filter. One warm cable assembly provides the FPAA signals for all three bands. The CCA also provides 

the biases for the cold JFET pair on the cold electronics Ceramic Multilayer Board (CMLB).  
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Figure 4.  CrIS detector Preamplifier Module (Warm electronics CCAs not shown) 



 

Quantum efficiency versus wavelength and noise spectral density under dark and illuminated conditions are used to 

determine the nine photodiodes of each color that are integrated in the FPAA. These detectors are placed in a 3 x 3 grid 

array on the base of the module with a placement accuracy of  +/- 2m from FOV to FOV. Placement of the photodiodes 

into the sapphire carrier is a critical step in the assembly of the FPAA. Careful procedures are followed to prevent 

degradation in performance through the FPAA mounting and assembly sequence. A picture of an assembled FPAA is 

shown in figure 5. Since the photodiodes are backside illuminated, the top metal pad that connects the p-type implants 

that form a single 850 m diameter lateral collection detector is seen in the picture. Also seen are the discrete 

components (JFETs, resistors etc.) that constitute the preamplifier module. 

 

 
 

Figure 5. Assembled CrIS LWIR FPAA module 

 

5.0 Detector & FPA Performance 

 

5.1 GOES-ABI 

 

An operable detector element is defined as a detector that meets all six different requirements. These six requirements 

include: linearity, gain stability, long term FPA output stability, output voltage versus bias voltage uniformity, quantum 

efficiency (QE), and noise equivalent irradiance (NEI). The requirement on is that 100% of the elements in each linear 

array spectral channel meet all operability requirements. In order to achieve the stringent operability criteria on every 

array channel, a detector select capability was designed into each ROIC, where there are 3 redundant columns of 

detectors per row for the visible bands and 6 redundant columns of detectors per row for the IR bands. The ROIC has a 

digital switching network and on-board ROIC memory where the optimal detector selection map is loaded onto each FPA 

via a serial word and one detector per row is read out during normal operation. The remaining redundant columns are 

switched out. This approach allows the user to select the best detector based on screen test results to maximize 

performance of the instrument. The detector selection map can be reprogrammed at any time including while on orbit. In 

addition to column redundancy there are redundant linear arrays per color channel, with each side going to two fully 



independent sets of cryogenic cables, warm cables and two sets of Sensor Unit Electronics (SUE). This Side A/B 

redundancy allows the user to switch over to the independent redundant side should a channel ever fail while on orbit.  

 

The benefit of the detector select approach with a stringent operability requirement can be seen in the example of a low 

operability 1230 ch HgCdTe array, SN8105, which has a 14.2 m cutoff wavelength, Figure 6. That array consists of 408 

rows with 6 redundant columns. The poor performance array is such that it would be a throwaway array under normal 

circumstances. However, it serves as a good illustration of the best detector selection approach to provide a 100 % 

operability linear array from a low operability array. The FM1 1230 ch array side 1 had a full array operability of 73.04% 

to all 6 operability requirements. After selection, 100% row operability is achieved. The 138 ch (1.38 m spectral band 

center) array, a 372 x 6 array with a cutoff wavelength of 2.5 m had excellent full array operability (99.42%); after 

selection it also had 100% row operability. DRS’ array yield was much higher because of the detector selection 

capability. There is no number of 1230 ch arrays without detector selection capability that would have yielded 100% 

operability on both sides. Clearly DRS’ approach to use a detector select capability is critical to building perfect arrays 

meeting very stringent operability requirements. 

 

 

 
1230 Ch SN8105 Operability Improvement     138 Ch SN2545 Operability Improvement with 

Detector Select              with Detector Select 

Figure 6.  Detector Select allows for 100% row operability to stressing set of operability requirements (QE, NEI, 

Linearity, Gain Stability, Long Term Stability, QE vs. bias uniformity) 

5.1.1 Readout Integrated Circuit (ROIC) Architecture 

All the ROIC designs from visible to LWIR use a similar Capacitive Transimpedance Amplifier (CTIA) unit cell 

amplifier to provide superior linearity and excellent signal injection with both high and low impedance detectors. An 

example of the ROIC design is the MWIR ROIC shown in figure 7.  All the designs also employ detector select circuitry 

that connects 1 of 6 detectors for the IR channels and 1 of 3 detectors for the visible channels to the unit cell. The 

redundant detectors that are not selected are automatically tied to the guard bias, which guarantees all the detectors are 

biased to the same potential whether or not they are attached to the unit cell amplifier. A 3 bit serial word loads the 

memory cells for each row of the array. This selection map can be overwritten or updated on orbit as necessary. Where a 

common ROIC is used for multiple FPA channels, the on-ROIC digitally selectable gain setting is optimized for each 

channel’s dynamic range. Correlated Double Sampling (CDS) filtering helps reduce noise at the ROIC output.  
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 Figure 7:   MWIR 332 x 6 CTIA ROIC Architecture 

5.1.2 QE/NEI/Linearity/Gain Stability 

Radiometric testing is performed using an extended source blackbody for the MWIR & LWIR channels and an 

integrating sphere for the VNIR channels. Every channel on each module is tested for QE and NEI and compared to the 

spec. Linearity and gain stability are also tested for every FPA. Test software calculates performance and determines 

pass/fail to each of the specs and generates a composite operability map. An example of the 1330 ch NEI performance 

data for all 6 columns on side 1 and with the final selection map is shown in Figure 8. Detectors that had high noise or 

were on the saturation rail were plotted with an NEI of 1E14 for display purposes on the 6 column plot in Figure 8. Side 

2 also has 100% operability. QE for both redundant sides for the 6.95 m ch array on MWIR FM1 is shown in Figure 9. 

100% of the rows meet the QE and the other 5 spec requirements on both sides. 

 

Figure 8:  1330 Ch MCT (15.3 m cutoff) SN9105 shows 100% NEI Operability After Selection 
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Figure 9:  695 Ch MCT (9.5 m cutoff) SN5504 shows 100% QE Operability After Selection  

5.1.3 Long Time Series(LTS) Data Capture 

Scanning array sensors are known to have image striping artifacts due to detector element drift (1/f noise or other forms 

of excess low frequency noise). The ABI instrument has an image quality requirement that minimizes the amount of 

image striping that is permissible. On orbit, the ABI instrument performs an offset calibration (dark space look) every 30 

seconds and a gain correction (cal reference look) every 15 minutes. To insure good image quality of the ABI FPMs, 

DRS performs Long Time Series testing by capturing successive frames over a 60 sec time interval and analyzing the 

data for drift for every FPA channel. Over successive time intervals (512, 1024, 2048, 4096, 8192, 16,384, 32,768 

frames, etc) covering up to 1 minute of data, if a detector’s noise is > 20% of the median array noise or the > NEI, 

whichever is greater, that detector is rejected. Detectors with minimal low frequency noise will remain stable throughout 

the 60 seconds. If minimal low frequency noise is present and the noise is white, the noise distribution for the array will 

tighten up with increasing number of frames. This improvement in noise uniformity is evident in the 1035 ch long time 

series noise data shown in Figure 10. The mean NEI is unchanged at 2.01E11 ph/cm2/sec with increasing number of 

frames, but the noise distribution tightens up from /mean = 3.5% for 512 frames, to1.89% for 2,048 frames, and 1.04% 

for 32,768 frames.  

 In addition to the LTS noise requirement there is a gain stability requirement on every operable detector element that 

states that the gain (i.e. QE) cannot change by more than +/-0.12% over a 15 minute time interval for the MWIR and 

LWIR channels and +/-0.1% for the VNIR channels.  These requirements along with a linearity requirement of 0.5% 

ensure good image quality with minimal image striping for the ABI instrument even when viewing very low contrast 

scenes. 
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Figure 10:  1035 Ch SN7109 Array NEI Distribution Tightens up with Increasing  

Number of Frames 

5.1.4 MTF/Crosstalk/Blooming 

Every array type used on ABI was qualification tested for MTF and crosstalk. This optical testing was done on a sample 

of representative detectors from each part. Either a HeNe laser (633 nm) or a 1.55 m diode laser, depending on the array 

type, was used as a source and imaged with a macro lens on to the array. Using an automated precision stepper motor a 2-

D fine scan and a coarse raster scan of the spot were performed to simulate a knife edge response (line spread function) 

for MTF. A MATLAB program interpolated the fine and coarse scan data and calculated an FFT of the line spread 

function data to generate an MTF curve for the detector under test 

 

Figure 11 shows the photo response from a 2-D fine spot scan taken on the 138/225 ch prototype design and Flight 

Design. The via on the HDVIP® design is the dip in photo response at the center of the detector response profile. It is 

inconsequential to detector QE or MTF. What is evident when looking at the spot scans is the “soft” edges and response 

lobes in the corners of the prototype design. The softness of the edge response and corner lobes is due to collection of 

electrons from outside the intended active area.By adding the “picture frame” shaped surface implants, the photoresponse 

profile of the detector edges sharpened up dramatically. Any electrons diffusing in the p-type MCT are collected by the 

surface implant rather than making their way to a neighboring detector element. The addition of the surface implant 

provided a significant improvement to crosstalk and MTF performance for flight. Figure 12 shows the E-W and N-S 

MTF performance relative to the ABI spec for both designs. 

 

 

Figure 11.  2-D spot scan data demonstrates Flight design improvement in 1.38/2.25 m Ch SWIR HDVIP® MCT 

detector edge response with the addition of a surface implant 

 

 
Figure 12.  138/225 Ch E-W and N-S Detector MTF Improved Dramatically in Flight Design 
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5.2 CrIS 

 

5.2.1 Single photodiode I-V, Quantum Efficiency, Spectral Response and Noise 

Detectors fabricated on a wafer are wirebonded in a carrier and dark I-V measurements at the 98 K for SWIR and MWIR 

and 81 K for LWIR operating temperatures. The magnitude of the current and shape of the I-V characteristics serves as a 

screen to pick detectors that will be inserted into Leadless Chip Carriers (LCCs). Each candidate detector selected from 

the wafer dark I-V measurement that is mounted into an LCC is measured in the dark and multiple flux conditions for I-V 

characteristics, noise under dark and illuminated conditions, spectral response and quantum efficiency (QE) performance 

at the specified operating temperature. Noise is measured at the nominal flux at which the photodiode will operate within 

the CrIS instrument.  

 

A commercial Fourier transform infrared spectrometer is used to obtain the spectral response at 81 K for all the LWIR 

photodiodes. All measurements are made at the temperature and bias at which the photodiodes will operate within the 

CrIS instrument. For the LWIR photodiodes, absolute QE is measured at  = 10.6 m using a narrow band filter. Narrow 

band filters centered at  = 7.4 m and  = 4.0 m are used for the MWIR and SWIR photodiodes QE measurements. 

The QE and spectral cut-off are traceable to NIST. The quantum efficiency using a narrow band filter is combined with 

the spectral response curve to obtain the QE versus wavelength curve as displayed in Figure 13 for a representative 

LWIR photodiode. QE as a function of wavelength is a principal specification that has to be met for a photodiode to be 

utilized in the CrIS instrument. The specification QE is also displayed in Figure 13 as a dashed red line. As can be seen 

from the figure the QE is high. Fringes seen in the data are a result of etalon effects in the anti-reflection coating and the 

detector. Modeling of QE vs wavelength have been described previously.14  

 

 
 

Figure 13.  Quantum efficiency versus wavelength for a LWIR [c(81 K) ~ 15.4 m] photodiode 

 

I-V and noise is measured15,16 for all photodiodes in each LCC at the operating temperature, i.e. LWIR are measured at 

81 K, whereas MWIR and SWIR photodiodes are measured at 98 K. Figure 14a is the noise spectral density curves in the 

dark and under illuminated conditions for the same diode shown in Figure 13. Noise spikes are reflective of pickup from 

the electronics and cables and not from the detector. The detector is shot noise limited down to ~ 500 Hz. Figure 14b is 

the calculated D* as a function of wavelength using the QE from Figure 13 and the noise from Figure 14a. The line at 14 

m extending up to 5 x 1010 Jones is the specification. The D* exceeds the specification with margin. These are the 

photodiodes that are selected for placement in the FPAA. Similar measurements and calculations are made for the MWIR 

photodiodes. SWIR photodiodes at 98 K have calculated white noise values in the low 10-15 A/Hz1/2 range. This noise 

level is impossible to measure consistently and accurately using the noise measurement station and commercial amplifiers 
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such as the Ithaco 1211 that are run at room temperature. and = 1.8 x 1015 ph/cm2/s respectively. Similar procedures 

are followed for the selection of MWIR and SWIR photodiodes prior to their selection for placement into FPAAs. 

 
       

 

Figure 14a and 14b. Dark and illuminated noise spectral density and D* for representative LWIR photodiode at 81 K. 
 

5.2.2 LWIR FPAA Data 
 

Nine candidate LWIR photodiodes have been mounted on the sapphire base and incorporated into the LWIR FPAA 

along with the preamplifier, cables etc. as shown in figure 5. The LWIR FPAA is currently being assembled and will be 

completed. Testing will be completed by end of March and data will be added to the paper when it is collected. The 

detectors will be cooled to 81 K and the photodiodes held at 100 mV reverse bias during subsequent responsivity and 

noise measurements. The reason for holding the photodiodes in reverse bias is two-fold. The impedance of large c(98 K) 

~ 9 m, and c(81 K) ~ 15.4 m photodiodes is quite low at zero bias. A pre-amplifier interfacing with a low impedance 

detector results in high noise in the pre-amplifier. Also, the injection efficiency is depressed, rendering it impossible to 

extract the photocurrent efficiently. Consequently, the external quantum efficiency is low. Operating the detector in 

reverse bias can increase the detector dynamic impedance by two orders of magnitude, resulting in the external quantum 

efficiency rising to the value of the internal quantum efficiency.  

 

Noise measurements at the nominal operating flux of  = 3.5 x 1017 photons·cm-2·s-1 are made for all the photodiodes in 

the FPAA. These flux values are achieved using an Electro-Optical Industries (EOI) Black Body mounted external to the 

dewar. The dewar flux is calibrated using a detector with known QE. For the LWIR FPAA, the electrical band of interest 

is 6.5 - 10.95 kHz. To obtain maximum performance, the photodiode noise needs to be photon noise dominated within 

the frequency band of interest. The gain of the pre-amplifier is designed to be maintained constant within the frequency 

band of interest. There is a one-to-one correspondence between response at a particular wavelength  and noise at 

frequency fi. To calculate D* at any wavelength, the quantum efficiency at any wavelength (), is ratioed to the noise 

corresponding to that particular wavelength. The other parameters listed in the D* equation 1 below are then input to 

calculate D* as a function of wavelength, D*(). Figure 15 is a plot of D* versus  for all the nine photodiodes in a 

previous LWIR FPAA which will be updated as the LWIR FPAA data is collected.  
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Figure 15. LWIR Spectral D* at 81 K and nominal flux  = 3.5 x 1017 photons·cm-2·s-1 

 

 

3.3 MWIR FPAA Data 
 

The MWIR FPAA is cooled to 98 K and the photodiodes are also held at 100 mV reverse bias as in the LWIR FPAA 

case. Noise measurements are made at the nominal  = 6.2 x 1016 photons·cm-2·s-1. The electrical band of interest is 

12.1-17.5 kHz, corresponding to wavelengths  = 8.26 m down to = 5.71 m. Spectral QE and D* as a function of 

wavelength is plotted in Figure 16.  The average D* at 8.26 m was 9.57 x 1010 +/- 4.16 x 109 cm-Hz1/2/W, exceeding the 

specification D* = 7.5 x 1010 cm-Hz1/2/W by 27.6%. 

 

Figure 16. MWIR Spectral D* at 98 K and nominal flux  = 6.2 x 1016 photons·cm-2·s-1 
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3.4 SWIR FPAA Data 

 

The SWIR FPAA is cooled to 98 K and the detectors are held at 60 mV reverse bias. Noise measurements are made at 

the nominal  = 1.8 x 1015 photons·cm-2·s-1. The electrical band of interest is 21.5-25.5 kHz, corresponding to 

wavelengths  = 4.64 m down to = 3.92 m. Spectral D* as a function of wavelength is plotted in Figure 17. The 

average D* at 4.64 m is 3.38 x 1011 +/- 1.21 x 1010 cm-Hz1/2/W, exceeding the specification D* = 3.0 x 1011 cm-Hz1/2/W 

by 12.6% and close to the BLIP D* of 4.2 x 1011 cm-Hz1/2/W. The BLIP D* is calculated using a QE = 1.  

 

 Figure 17. SWIR Spectral D* at 98 K and nominal flux  = 1.8Y x 1015 photons·cm-2·s-1 
 

6.0 SUMMARY 

DRS has successfully designed and manufactured FPM modules for GOES ABI. Detectors for the 16 channels were 

fabricated using three different technologies. Visible channels detector arrays were fabricated using Si pin diode 

technology. The VNIR through 961 channel detectors were fabricated in LPE grown HgCdTe detectors utilizing the 

HDVIP detector architecture. The LWIR channels HgCdTe were grown by MBE and fabricated using the DLPH detector 

architecture. The GOES ABI instrument will provide a significant performance improvement over current GOES 

imagers. DRS has delivered fully compliant Flight Module shipsets (VNIR, MWIR and LWIR) with 100% detector row 

operability on all 16 channels to the ITT-Exelis-Harris ABI sensor requirements.   

The appropriate bandgap n-type Hg1-xCdxTe was grown on lattice-matched CdZnTe. 850-m-diameter photodiodes were 

manufactured using a Lateral Collection Diode (LCD) architecture. Custom pre-amplifiers are separately designed to 

interface with the large LWIR and MWIR low impedance photodiodes and with SWIR photodiodes at frequencies up to 

25.5 kHz. Pre-amplifier gain is maintained constant within the electrical band of interest for each color. The LWIR, 

MWIR and SWIR photodiodes are operated at 81 K, 98 K and 98 K respectively. Performance goals are D* = 5.0 x 1010 

cm-Hz1/2/W at 14.0 m, 7.5 x 1010 cm-Hz1/2/W at 8.26 m and 3.0 x 1011 cm-Hz1/2/W at 4.64 m. Measured mean values 

for the nine photodiodes in each of the LWIR, MWIR and SWIR FPAAs are D* = 5.3 x 1010 cm-Hz1/2/W at 14.01m, 9.6 

x 1010 cm-Hz1/2/W at 8.26 m and 3.1 x 1011 cm-Hz1/2/W at 4.64 m. These compare favorably with the BLIP calculated 

at the nominal flux condition are D* = 8.36 x 1010 cm Hz1/2/W at 14.01 m, 1.4 x 1011 cm-Hz1/2/W at 8.26 m and 3.4 x 

1011 cm-Hz1/2/W at 4.64 m. 
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