3,583 research outputs found

    Structure and kinematics of the peculiar galaxy NGC 128

    Get PDF
    This is a multiband photometric and spectroscopic study of the peculiar S0 galaxy NGC128. We present results from broad (B and R) and narrow band optical CCD photometry, near (NIR) and far (FIR) infrared observations, long slit spectroscopy, and Fabry-Perot interferometry (CIGALE). The peculiar peanut shape morphology of the galaxy is observed both at optical and near-infrared wavelengths. The stellar disk is thick and distorted (arc-bended), with a color asymmetry along the major axis due to the presence of a large amount of dust, estimated through NIR and FIR data of ~6x10^6 M_sun, in the region of interaction with the companion galaxy NGC127. The color maps are nearly uniform over the whole galaxy, but for the major axis asymmetry, and a small gradient toward the center indicating the presence of a redder disk-like component. The H_alpha image indeed reveals the existence of a tilted gaseous ``disk'' around the center, oriented with the major axis toward the companion galaxy NGC127. Long slit and CIGALE data confirm the presence of gas in a disk-like component counter-rotating and inclined approximately of 50 deg. to the line of sight. The mass of the gas disk in the inner region is ~2.7x10^4 M_sun. The stellar velocity field is cylindrical up to the last measured points of the derived rotation curves, while the velocity dispersion profiles are typical for an S0 galaxy, but for an extended constant behaviour along the minor axis.Comment: accepted for pubblication in A&A Supp

    Fifty Years of Quasars: Physical Insights and Potential for Cosmology

    Full text link
    Last year (2013) was more or less the 50th anniversary of the discovery of quasars. It is an interesting time to review what we know (and don't know) about them both empirically and theoretically. These compact sources involving line emitting plasma show extraordinary luminosities extending to one thousand times that of our Milky Way in emitting volumes of a few solar system diameters (bolometric luminosity log Lbol∼_{bol} \sim 44-48 [erg s−1^{-1}]: D=1-3 light months ∼\sim 10310^3 - 10410^4 gravitational radii). The advent of 8-10 meter class telescopes enables us to study them spectroscopically in ever greater detail. In 2000 we introduced a 4D Eigenvector 1 parameters space involving optical, UV and X-Ray measures designed to serve as a 4D equivalent of the 2D Hertzsprung-Russell diagram so important for depicting the diversity of stellar types and evolutionary states. This diagram has revealed a principal sequence of quasars distinguished by Eddington ratio (proportional to the accretion rate per unit mass). Thus while stellar differences are primarily driven by the mass of a star, quasar differences are apparently driven by the ratio of luminosity-to-mass. Out of this work has emerged the concept of two quasars populations A and B separated at Eddington ratio around 0.2 which maximizes quasar multispectral differences. The mysterious 8% of quasars that are radio-loud belong to population B which are the lowest accretors with the largest black hole masses. Finally we consider the most extreme population A quasars which are the highest accretors and in some cases are among the youngest quasars. We describe how these sources might be exploited as standard candles for cosmology.Comment: Accepted for publication in Journal of Physics Conference Series (10 pages, 4 figures). Invited Lecture at International Symposium on the Physics of Ionized Gas (SPIG 2014), Belgrade 26-29 August 201

    The evolution of the number density of compact galaxies

    Full text link
    We compare the number density of compact (small size) massive galaxies at low and high redshift using our Padova Millennium Galaxy and Group Catalogue (PM2GC) at z=0.03-0.11 and the CANDELS results from Barro et al. (2013) at z=1-2. The number density of local compact galaxies with luminosity weighted (LW) ages compatible with being already passive at high redshift is compared with the density of compact passive galaxies observed at high-z. Our results place an upper limit of a factor ~2 to the evolution of the number density and are inconsistent with a significant size evolution for most of the compact galaxies observed at high-z. The evolution may be instead significant (up to a factor 5) for the most extreme, ultracompact galaxies. Considering all compact galaxies, regardless of LW age and star formation activity, a minority of local compact galaxies (<=1/3) might have formed at z<1. Finally, we show that the secular decrease of the galaxy stellar mass due to simple stellar evolution may in some cases be a non-negligible factor in the context of the evolution of the mass-size relation, and we caution that passive evolution in mass should be taken into account when comparing samples at different redshifts.Comment: ApJ in pres

    Redundancy of the genetic code enables translational pausing

    Get PDF
    Abstract The codon redundancy (degeneracy) found in protein-coding regions of mRNA also prescribes Translational Pausing (TP). When coupled with the appropriate interpreters, multiple meanings and functions are programmed into the same sequence of configurable switch-settings. This additional layer of Ontological Prescriptive Information (PIo) purposely slows or speeds up the translation-decoding process within the ribosome. Variable translation rates help prescribe functional folding of the nascent protein. Redundancy of the codon to amino acid mapping, therefore, is anything but superfluous or degenerate. Redundancy programming allows for simultaneous dual prescriptions of TP and amino acid assignments without cross-talk. This allows both functions to be coincident and realizable. We will demonstrate that the TP schema is a bona fide rule-based code, conforming to logical code-like properties. Second, we will demonstrate that this TP code is programmed into the supposedly degenerate redundancy of the codon table. We will show that algorithmic processes play a dominant role in the realization of this multi-dimensional code. <br/

    Emission Line Galaxies and Active Galactic Nuclei in WINGS clusters

    Get PDF
    We present the analysis of the emission line galaxies members of 46 low redshift (0.04 < z < 0.07) clusters observed by WINGS (WIde-field Nearby Galaxy cluster Survey, Fasano et al. 2006). Emission line galaxies were identified following criteria that are meant to minimize biases against non-star forming galaxies and classified employing diagnostic diagrams. We have examined the emission line properties and frequencies of star forming galaxies, transition objects and active galactic nuclei (AGNs: LINERs and Seyferts), unclassified galaxies with emission lines, and quiescent galaxies with no detectable line emission. A deficit of emission line galaxies in the cluster environment is indicated by both a lower frequency with respect to control samples, and by a systematically lower Balmer emission line equivalent width and luminosity (up to one order of magnitude in equivalent width with respect to control samples for transition objects) that implies a lower amount of ionised gas per unit mass and a lower star formation rate if the source is classified as Hii region. A sizable population of transition objects and of low-luminosity LINERs (approx. 10 - 20% of all emission line galaxies) is detected among WINGS cluster galaxies. With respect to Hii sources they are a factor of approx. 1.5 more frequent than (or at least as frequent as) in control samples. Transition objects and LINERs in cluster are most affected in terms of line equivalent width by the environment and appear predominantly consistent with "retired" galaxies. Shock heating can be a possible gas excitation mechanism able to account for observed line ratios. Specific to the cluster environment, we suggest interaction between atomic and molecular gas and the intracluster medium as a possible physical cause of line-emitting shocks.Comment: Astronomy and Astrophysics, accepte

    BSM physics at the LHeC and the FCC-he

    Get PDF
    Electron-proton (e-p) colliders are an ideal laboratory to study common features of electron and quarks with production via electroweak bosons, leptoquarks, multi-jet final states and very forward physics, due to their impressive pseudorapidity coverage. In addition to these physics cases, there exist a broad Beyond the Standard Model (BSM) program aimed at exploring the capabilities of the LHeC [1] and FCC-he [2] for several New Physics scenarios. Although their centre-of-mass energy is down with respect to a pp collider by a factor of √Ep/Ee ∼ 10 (30) for the LHeC (FCC-he), they can be an invaluable tool to characterize BSM physics hints at ee and pp machines. The aim of this talk is to provide, on behalf of the BSM e-p Working Group, an overview of the aforementioned BSM program, by briefly summarizing the existing studies and reporting on the most recent progress. We expect that the ample scope in terms of NP models to be tested would enhance the synergies between the BSM and e-p communities

    Arp 194: Evidence of Tidal Stripping of Gas and Cross-Fueling

    Get PDF
    We present new imaging and spectroscopic observations of the interacting system Arp 194 (= UGC 06945 = VV 126). The northern component (A194N) is a distorted spiral or ring galaxy likely disrupted by a collision or close encounter with a southern galaxy (A194S). There is evidence that a third galaxy with similar recession velocity is projected on A194N but its role is likely secondary. A194S is connected to A194N by a string of emission knots which motivates our interpretation that the former was the intruder. Three of the knots are easily discernible in B,R, and H-alpha images and are assumed to trace the path of the intruder following the encounter, which we estimate occurred a few 10^8 yr ago. Both A194S and N are experiencing strong bursts of star formation: the H-alpha luminosity indicates a total star formation rate ~ 10 solar masses per year. The lack of detectable J and K emission from the blobs, along with strong H-alpha emission, indicates that an evolved stellar population is not likely to be present. The brightest knot (closest to A194S) shows a star formation rate of ~1.2 solar masses per year which, if sustained over a time ~ 7 10^7 yr, could explain the spectral energy distribution. This suggests that the stripped matter was originally predominantly gaseous. The brightest knot is detected as a FIRST radio source and this is likely the signature of supernova remnants related to enhanced star formation. Motions in the gas between the brightest knot and A194S, traced by an emission line link of increasing radial velocity, suggests infall toward the center of the intruder. Arp 194 is therefore one of the few galaxies where evidence of ``cross-fueling'' is observed [LaTeX removed]

    The concentration-mass relation of clusters of galaxies from the OmegaWINGS survey

    Get PDF
    The relation between a cosmological halo concentration and its mass (cMr) is a powerful tool to constrain cosmological models of halo formation and evolution. On the scale of galaxy clusters the cMr has so far been determined mostly with X-ray and gravitational lensing data. The use of independent techniques is helpful in assessing possible systematics. Here we provide one of the few determinations of the cMr by the dynamical analysis of the projected-phase-space distribution of cluster members. Based on the WINGS and OmegaWINGS data sets, we used the Jeans analysis with the MAMPOSSt technique to determine masses and concentrations for 49 nearby clusters, each of which has ~60 spectroscopic members or more within the virial region, after removal of substructures. Our cMr is in statistical agreement with theoretical predictions based on LambdaCDM cosmological simulations. Our cMr is different from most previous observational determinations because of its flatter slope and lower normalization. It is however in agreement with two recent cMr obtained using the lensing technique on the CLASH and LoCuSS cluster data sets. In the future we will extend our analysis to galaxy systems of lower mass and at higher redshifts.Comment: Astronomy & Astrophysics in press. 11 pages, 6 figure

    OmegaWINGS: OmegaCAM@VST observations of WINGS galaxy clusters

    Get PDF
    The Wide-field Nearby Galaxy-cluster Survey (WINGS) is a wide-field multi-wavelength survey of X-ray selected clusters at z =0.04-0.07. The original 34'x34' WINGS field-of- view has now been extended to cover a 1 sq.deg field with both photometry and spectroscopy. In this paper we present the Johnson B and V-band OmegaCAM/VST observations of 46 WINGS clusters, together with the data reduction, data quality and Sextractor photometric catalogs. With a median seeing of 1arcs in both bands, our 25-minutes exposures in each band typically reach the 50% completeness level at V=23.1 mag. The quality of the astrometric and photometric accuracy has been verified by comparison with the 2MASS as well as with SDSS astrometry, and SDSS and previous WINGS imaging. Star/galaxy separation and sky-subtraction procedure have been tested comparing with previous WINGS data. The Sextractor photometric catalogues are publicly available at the CDS, and will be included in the next release of the WINGS database on the VO together with the OmegaCAM reduced images. These data form the basis for a large ongoing spectroscopic campaign with AAOmega/AAT and is being employed for a variety of studies. [abridged]Comment: submitted to A&

    The hybrid solution for the Fundamental Plane

    Full text link
    By exploiting the database of early-type galaxies (ETGs) members of the WINGS survey of nearby clusters, we address here the long debated question of the origin and shape of the Fundamental Plane (FP). Our data suggest that different physical mechanisms concur in shaping and tilting the FP with respect to the virial plane (VP) expectation. In particular, an hybrid solution in which the structure of galaxies and their stellar population are the main contributors to the FP tilt seems to be favoured. We find that the bulk of the tilt should be attributed to structural non-homology, while stellar population effects play an important but less crucial role. Our data indicate that the differential FP tilt between the V and K-band is due to a sort of entanglement between structural and stellar population effects, for which the inward steepening of color profiles (V-K) tends to increase at increasing the stellar mass of ETGs. The same analysis applied to the ATLAS3D and SDSS data in common with WINGS (WSDSS throughout the paper) confirms our results, the only remarkable difference being the less important role of the stellar mass-to-light-ratio in determining the FP tilt. The ATLAS3D data also suggest that the tilt depends as well on the dark matter (DM) fraction and on the rotational contribution to the kinetic energy (Vrot/sigma). We show that the global properties of the FP can be understood in terms of the underlying correlation among mass, structure and stellar population of ETGs, for which, at increasing the stellar mass, ETGs become (on average) older and more centrally concentrated. Finally, we show that a Malmquist-like selection effect may mimic a differential evolution of the mass-to-light ratio for galaxies of different masses. This should be taken into account in the studies investigating the amount of the so called downsizing phenomenon.Comment: 22 pages, 17 figure
    • …
    corecore