15 research outputs found

    Comparing comorbidity measures for predicting mortality and hospitalization in three population-based cohorts

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Multiple comorbidity measures have been developed for risk-adjustment in studies using administrative data, but it is unclear which measure is optimal for specific outcomes and if the measures are equally valid in different populations. This research examined the predictive performance of five comorbidity measures in three population-based cohorts.</p> <p>Methods</p> <p>Administrative data from the province of Saskatchewan, Canada, were used to create the cohorts. The general population cohort included all Saskatchewan residents 20+ years, the diabetes cohort included individuals 20+ years with a diabetes diagnosis in hospital and/or physician data, and the osteoporosis cohort included individuals 50+ years with diagnosed or treated osteoporosis. Five comorbidity measures based on health services utilization, number of different diagnoses, and prescription drugs over one year were defined. Predictive performance was assessed for death and hospitalization outcomes using measures of discrimination (<it>c</it>-statistic) and calibration (Brier score) for multiple logistic regression models.</p> <p>Results</p> <p>The comorbidity measures with optimal performance were the same in the general population (<it>n </it>= 662,423), diabetes (<it>n </it>= 41,925), and osteoporosis (<it>n </it>= 28,068) cohorts. For mortality, the Elixhauser index resulted in the highest <it>c</it>-statistic and lowest Brier score, followed by the Charlson index. For hospitalization, the number of diagnoses had the best predictive performance. Consistent results were obtained when we restricted attention to the population 65+ years in each cohort.</p> <p>Conclusions</p> <p>The optimal comorbidity measure depends on the health outcome and not on the disease characteristics of the study population.</p

    The ladies trial: laparoscopic peritoneal lavage or resection for purulent peritonitisA and Hartmann's procedure or resection with primary anastomosis for purulent or faecal peritonitisB in perforated diverticulitis (NTR2037)

    Get PDF
    Background: Recently, excellent results are reported on laparoscopic lavage in patients with purulent perforated diverticulitis as an alternative for sigmoidectomy and ostomy. The objective of this study is to determine whether LaparOscopic LAvage and drainage is a safe and effective treatment for patients with purulent peritonitis (LOLA-arm) and to determine the optimal resectional strategy in patients with a purulent or faecal peritonitis (DIVA-arm: perforated DIVerticulitis: sigmoidresection with or without Anastomosis). Methods/Design: In this multicentre randomised trial all patients with perforated diverticulitis are included. Upon laparoscopy, patients with purulent peritonitis are treated with laparoscopic lavage and drainage, Hartmann's procedure or sigmoidectomy with primary anastomosis in a ratio of 2:1:1 (LOLA-arm). Patients with faecal peritonitis will be randomised 1:1 between Hartmann's procedure and resection with primary anastomosis (DIVA-arm). The primary combined endpoint of the LOLA-arm is major morbidity and mortality. A sample size of 132:66:66 patients will be able to detect a difference in the primary endpoint from 25% in resectional groups compared to 10% in the laparoscopic lavage group (two sided alpha = 5%, power = 90%). Endpoint of the DIVA-arm is stoma free survival one year after initial surgery. In this arm 212 patients are needed to significantly demonstrate a difference of 30% (log rank test two sided alpha = 5% and powe

    COMPRES: a prospective postmarketing evaluation of the compression anastomosis ring CAR 27/ColonRing

    No full text
    AimPreclinical studies have suggested that nitinol-based compression anastomosis might be a viable solution to anastomotic leak following low anterior resection. A prospective multicentre open label study was therefore designed to evaluate the performance of the ColonRing(™) in (low) colorectal anastomosis.MethodThe primary outcome measure was anastomotic leakage. Patients were recruited at 13 different colorectal surgical units in Europe, the United States and Israel. Institutional review board approval was obtained.ResultsBetween 21 March 2010 and 3 August 2011, 266 patients completed the study protocol. The overall anastomotic leakage rate was 5.3% for all anastomoses, including a rate of 3.1% for low anastomoses. Septic anastomotic complications occurred in 8.3% of all anastomoses and 8.2% of low anastomoses.ConclusionNitinol compression anastomosis is safe, effective and easy to use and may offer an advantage for low colorectal anastomosis. A prospective randomized trial comparing ColonRing(™) with conventional stapling is needed

    COLOR II - A randomized clinical trial comparing laparoscopic and open surgery for rectal cancer

    No full text
    Introduction: Laparoscopic resection of rectal cancer has been proven efficacious but morbidity and oncological outcome need to be investigated in a randomized clinical trial. Trial design: Non-inferiority randomized clinical trial. Methods: The COLOR II trial is an ongoing international randomized clinical trial. Currently 27 hospitals from Europe, South Korea and Canada are including patients. The primary endpoint is loco-regional recurrence rate three years post-operatively. Secondary endpoints cover quality of life, overall and disease free survival, post-operative morbidity and health economy analysis. Results: By July 2008, 27 hospitals from the Netherlands, Belgium, Germany, Sweden, Spain, Denmark, South Korea and Canada had included 739 patients. The intra-operative conversion rate in the laparoscopic group was 17%. Distribution of age, location of the tumor and radiotherapy were equal in both treatment groups. Most tumors are located in the mid-rectum (41%). Conclusion: Laparoscopic surgery in the treatment of rectal cancer is feasible. The results and safety of laparoscopic surgery in the treatment of rectal cancer remain unknown, but are subject of interim analysis within the COLOR II trial. Completion of inclusion is expected by the end of 2009. Trial registration: Clinicaltrials.gov, identifier: NCT00297791 (www.clinicaltrials.gov)
    corecore