13 research outputs found
Recommended from our members
The Simons Observatory: Science goals and forecasts
The Simons Observatory (SO) is a new cosmic microwave background experiment
being built on Cerro Toco in Chile, due to begin observations in the early
2020s. We describe the scientific goals of the experiment, motivate the design,
and forecast its performance. SO will measure the temperature and polarization
anisotropy of the cosmic microwave background in six frequency bands: 27, 39,
93, 145, 225 and 280 GHz. The initial configuration of SO will have three
small-aperture 0.5-m telescopes (SATs) and one large-aperture 6-m telescope
(LAT), with a total of 60,000 cryogenic bolometers. Our key science goals are
to characterize the primordial perturbations, measure the number of
relativistic species and the mass of neutrinos, test for deviations from a
cosmological constant, improve our understanding of galaxy evolution, and
constrain the duration of reionization. The SATs will target the largest
angular scales observable from Chile, mapping ~10% of the sky to a white noise
level of 2 K-arcmin in combined 93 and 145 GHz bands, to measure the
primordial tensor-to-scalar ratio, , at a target level of .
The LAT will map ~40% of the sky at arcminute angular resolution to an expected
white noise level of 6 K-arcmin in combined 93 and 145 GHz bands,
overlapping with the majority of the LSST sky region and partially with DESI.
With up to an order of magnitude lower polarization noise than maps from the
Planck satellite, the high-resolution sky maps will constrain cosmological
parameters derived from the damping tail, gravitational lensing of the
microwave background, the primordial bispectrum, and the thermal and kinematic
Sunyaev-Zel'dovich effects, and will aid in delensing the large-angle
polarization signal to measure the tensor-to-scalar ratio. The survey will also
provide a legacy catalog of 16,000 galaxy clusters and more than 20,000
extragalactic sources
Microwave multiplexing on the Keck Array
We describe an on-sky demonstration of a microwave-multiplexing readout
system in one of the receivers of the Keck Array, a polarimetry experiment
observing the cosmic microwave background at the South Pole. During the austral
summer of 2018-2019, we replaced the time-division multiplexing readout system
with microwave-multiplexing components including superconducting microwave
resonators coupled to radio-frequency superconducting quantum interference
devices at the sub-Kelvin focal plane, coaxial-cable plumbing and amplification
between room temperature and the cold stages, and a SLAC Microresonator Radio
Frequency system for the warm electronics. In the range 5-6 GHz, a single
coaxial cable reads out 528 channels. The readout system is coupled to
transition-edge sensors, which are in turn coupled to 150-GHz slot-dipole
phased-array antennas. Observations began in April 2019, and we report here on
an initial characterization of the system performance.Comment: 9 pages, 11 figures, Accepted by the Journal of Low Temperature
Physics (Proceedings of the 18th International Workshop on Low Temperature
Detectors
Recommended from our members
The Simons Observatory: Science goals and forecasts
The Simons Observatory (SO) is a new cosmic microwave background experiment being built on Cerro Toco in Chile, due to begin observations in the early 2020s. We describe the scientific goals of the experiment, motivate the design, and forecast its performance. SO will measure the temperature and polarization anisotropy of the cosmic microwave background in six frequency bands centered at: 27, 39, 93, 145, 225 and 280 GHz. The initial configuration of SO will have three small-aperture 0.5-m telescopes and one large-aperture 6-m telescope, with a total of 60,000 cryogenic bolometers. Our key science goals are to characterize the primordial perturbations, measure the number of relativistic species and the mass of neutrinos, test for deviations from a cosmological constant, improve our understanding of galaxy evolution, and constrain the duration of reionization. The small aperture telescopes will target the largest angular scales observable from Chile, mapping 10% of the sky to a white noise level of 2 μK-arcmin in combined 93 and 145 GHz bands, to measure the primordial tensor-to-scalar ratio, r, at a target level of σ(r)=0.003. The large aperture telescope will map 40% of the sky at arcminute angular resolution to an expected white noise level of 6 μK-arcmin in combined 93 and 145 GHz bands, overlapping with the majority of the Large Synoptic Survey Telescope sky region and partially with the Dark Energy Spectroscopic Instrument. With up to an order of magnitude lower polarization noise than maps from the Planck satellite, the high-resolution sky maps will constrain cosmological parameters derived from the damping tail, gravitational lensing of the microwave background, the primordial bispectrum, and the thermal and kinematic Sunyaev-Zel'dovich effects, and will aid in delensing the large-angle polarization signal to measure the tensor-to-scalar ratio. The survey will also provide a legacy catalog of 16,000 galaxy clusters and more than 20,000 extragalactic sources
Microwave Multiplexing on the Keck Array
International audienceWe describe an on-sky demonstration of a microwave-multiplexing readout system in one of the receivers of the Keck Array, a polarimetry experiment observing the cosmic microwave background at the South Pole. During the austral summer of 2018–2019, we replaced the time-division multiplexing readout system with microwave-multiplexing components including superconducting microwave resonators coupled to radio frequency superconducting quantum interference devices at the sub-Kelvin focal plane, coaxial-cable plumbing and amplification between room temperature and the cold stages, and a SLAC Microresonator Radio Frequency system for the warm electronics. In the range 5–6 GHz, a single coaxial cable reads out 528 channels. The readout system is coupled to transition-edge sensors, which are in turn coupled to 150-GHz slot-dipole phased-array antennas. Observations began in April 2019, and we report here on an initial characterization of the system performance
The Simons Observatory: Science goals and forecasts
The Simons Observatory (SO) is a new cosmic microwave background experiment being built on Cerro Toco in Chile, due to begin observations in the early 2020s. We describe the scientific goals of the experiment, motivate the design, and forecast its performance. SO will measure the temperature and polarization anisotropy of the cosmic microwave background in six frequency bands centered at: 27, 39, 93, 145, 225 and 280 GHz. The initial configuration of SO will have three small-aperture 0.5-m telescopes and one large-aperture 6-m telescope, with a total of 60,000 cryogenic bolometers. Our key science goals are to characterize the primordial perturbations, measure the number of relativistic species and the mass of neutrinos, test for deviations from a cosmological constant, improve our understanding of galaxy evolution, and constrain the duration of reionization. The small aperture telescopes will target the largest angular scales observable from Chile, mapping 10% of the sky to a white noise level of 2 μK-arcmin in combined 93 and 145 GHz bands, to measure the primordial tensor-to-scalar ratio, r, at a target level of σ(r)=0.003. The large aperture telescope will map 40% of the sky at arcminute angular resolution to an expected white noise level of 6 μK-arcmin in combined 93 and 145 GHz bands, overlapping with the majority of the Large Synoptic Survey Telescope sky region and partially with the Dark Energy Spectroscopic Instrument. With up to an order of magnitude lower polarization noise than maps from the Planck satellite, the high-resolution sky maps will constrain cosmological parameters derived from the damping tail, gravitational lensing of the microwave background, the primordial bispectrum, and the thermal and kinematic Sunyaev-Zel'dovich effects, and will aid in delensing the large-angle polarization signal to measure the tensor-to-scalar ratio. The survey will also provide a legacy catalog of 16,000 galaxy clusters and more than 20,000 extragalactic sources
The Simons observatory: Astro2020 decadal project whitepaper
The Simons Observatory (SO) is a ground-based cosmic microwave background (CMB) experiment sited on Cerro Toco in the Atacama Desert in Chile that promises to provide breakthrough discoveries in fundamental physics, cosmology, and astrophysics. Supported by the Simons Foundation, the Heising-Simons Foundation, and with contributions from collaborating institutions, SO will see first light in 2021 and start a five year survey in 2022. SO has 287 collaborators from 12 countries and 53 institutions, including 85 students and 90 postdocs. The SO experiment in its currently funded form ('SO-Nominal') consists of three 0.4 m Small Aperture Telescopes (SATs) and one 6 m Large Aperture Telescope (LAT). Optimized for minimizing systematic errors in polarization measurements at large angular scales, the SATs will perform a deep, degree-scale survey of 10% of the sky to search for the signature of primordial gravitational waves. The LAT will survey 40% of the sky with arc-minute resolution. These observations will measure (or limit) the sum of neutrino masses, search for light relics, measure the early behavior of Dark Energy, and refine our understanding of the intergalactic medium, clusters and the role of feedback in galaxy formation. With up to ten times the sensitivity and five times the angular resolution of the Planck satellite, and roughly an order of magnitude increase in mapping speed over currently operating ("Stage 3") experiments, SO will measure the CMB temperature and polarization fluctuations to exquisite precision in six frequency bands from 27 to 280 GHz. SO will rapidly advance CMB science while informing the design of future observatories such as CMB-S4
Recommended from our members
The Simons Observatory: Astro2020 Decadal Project Whitepaper
The Simons Observatory (SO) is a ground-based cosmic microwave background
(CMB) experiment sited on Cerro Toco in the Atacama Desert in Chile that
promises to provide breakthrough discoveries in fundamental physics, cosmology,
and astrophysics. Supported by the Simons Foundation, the Heising-Simons
Foundation, and with contributions from collaborating institutions, SO will see
first light in 2021 and start a five year survey in 2022. SO has 287
collaborators from 12 countries and 53 institutions, including 85 students and
90 postdocs.
The SO experiment in its currently funded form ('SO-Nominal') consists of
three 0.4 m Small Aperture Telescopes (SATs) and one 6 m Large Aperture
Telescope (LAT). Optimized for minimizing systematic errors in polarization
measurements at large angular scales, the SATs will perform a deep,
degree-scale survey of 10% of the sky to search for the signature of primordial
gravitational waves. The LAT will survey 40% of the sky with arc-minute
resolution. These observations will measure (or limit) the sum of neutrino
masses, search for light relics, measure the early behavior of Dark Energy, and
refine our understanding of the intergalactic medium, clusters and the role of
feedback in galaxy formation.
With up to ten times the sensitivity and five times the angular resolution of
the Planck satellite, and roughly an order of magnitude increase in mapping
speed over currently operating ("Stage 3") experiments, SO will measure the CMB
temperature and polarization fluctuations to exquisite precision in six
frequency bands from 27 to 280 GHz. SO will rapidly advance CMB science while
informing the design of future observatories such as CMB-S4