161 research outputs found

    Cognitive Sciences and Child Poverty: Facts and Challenges

    Get PDF

    Retooling Computational Techniques for EEG-Based Neurocognitive Modeling of Children's Data, Validity and Prospects for Learning and Education

    Get PDF
    This paper describes continuing research on the building of neurocognitive models of the internal mental and brain processes of children using a novel adapted combination of existing computational approaches and tools, and using electro-encephalographic (EEG) data to validate the models. The guiding working model which was pragmatically selected for investigation was the established and widely used Adaptive Control of Thought-Rational (ACT-R) modeling architecture from cognitive science. The anatomo-functional circuitry covered by ACT-R is validated by MRI-based neuroscience research. The present experimental data was obtained from a cognitive neuropsychology study involving preschool children (aged 4ā€“6), which measured their visual selective attention and word comprehension behaviors. The collection and analysis of Event-Related Potentials (ERPs) from the EEG data allowed for the identification of sources of electrical activity known as dipoles within the cortex, using a combination of computational tools (Independent Component Analysis, FASTICA; EEG-Lab DIPFIT). The results were then used to build neurocognitive models based on Python ACT-R such that the patterns and the timings of the measured EEG could be reproduced as simplified symbolic representations of spikes, built through simplified electric-field simulations. The models simulated ultimately accounted for more than three-quarters of variations spatially and temporally in all electrical potential measurements (fit of model to dipole data expressed as R2 ranged between 0.75 and 0.98; P < 0.0001). Implications for practical uses of the present work are discussed for learning and educational applications in non-clinical and special needs children's populations, and for the possible use of non-experts (teachers and parents)

    Imagery-mediated verbal learning depends on vividnessā€“familiarity interactions: The possible role of dualistic resting state network activity interference

    Get PDF
    Using secondary database analysis, we tested whether the (implicit) familiarity of eliciting noun-cues and the (explicit) vividness of corresponding imagery exerted additive or interactive influences on verbal learning, as measured by the probability of incidental noun recall and image latency times (RTs). Noun-cues with incongruent levels of vividness and familiarity (high/low; low/high, respectively) at encoding were subsequently associated at retrieval with the lowest recall probabilities, while noun-cues related with congruent levels (high/high; low/low) were associated with higher recall probabilities. RTs in the high vividness and high familiarity grouping were significantly faster than all other subsets (low/low, low/high, high/low) which did not significantly differ among each other. The findings contradict: (1) associative theories predicting positive monotonic relationships between memory strength and learning; and (2) non-monotonic plasticity hypothesis (NMPH), aiming at generalizing the non-monotonic relationship between a neuronā€™s excitation level and its synaptic strength to broad neural networks. We propose a dualistic neuropsychological model of memory consolidation that mimics the global activity in two large resting-state networks (RSNs), the default mode network (DMN) and the task-positive-network (TPN). Based on this model, we suggest that incongruence and congruence between vividness and familiarity reflect, respectively, competition and synergy between DMN and TPN activity. We argue that competition or synergy between these RSNs at the time of stimulus encoding disproportionately influences long term semantic memory consolidation in healthy controls. These findings could assist in developing neurophenomenological markers of core memory deficits currently hypothesized to be shared across multiple psychopathological conditions

    Chapter Lā€™architettura manicomiale dei primi del Novecento a Potenza: da luogo della marginalitĆ  a luogo dellā€™abitare

    Get PDF
    The 43rd UID conference, held in Genova, takes up the theme of ā€˜Dialoguesā€™ as practice and debate on many fundamental topics in our social life, especially in these complex and not yet resolved times. The city of Genova offers the opportunity to ponder on the value of comparison and on the possibilities for the community, naturally focused on the aspects that concern us, as professors, researchers, disseminators of knowledge, or on all the possibile meanings of the discipline of representation and its dialogue with ā€˜othersā€™, which we have broadly catalogued in three macro areas: History, Semiotics, Science / Technology. Therefore, ā€œdialogueā€ as a profitable exchange based on a common language, without which it is impossible to comprehend and understand one another; and the graphic sign that connotes the conference is the precise transcription of this concept: the title ā€˜translatedā€™ into signs, derived from the visual alphabet designed for the visual identity of the UID since 2017. There are many topics which refer to three macro sessions: - Witnessing (signs and history) - Communicating (signs and semiotics) - Experimenting (signs and sciences) Thanks to the different points of view, an exceptional resource of our disciplinary area, we want to try to outline the prevailing theoretical-operational synergies, the collaborative lines of an instrumental nature, the recent updates of the repertoires of images that attest and nourish the relations among representation, history, semiotics, sciences

    Explicit and implicit issues in the developmental cognitive neuroscience of social inequality

    Get PDF
    The appearance of developmental cognitive neuroscience (DCN) in the socioeconomic status (SES) research arena is hugely transformative, but challenging. We review challenges rooted in the implicit and explicit assumptions informing this newborn field. We provide balanced theoretical alternatives on how hypothesized psychological processes map onto the brain (e.g. problem of localization) and how experimental phenomena at multiple levels of analysis (e.g. behaviour, cognition and the brain) could be related. We therefore examine unclear issues regarding the existing perspectives on poverty and their relationships with low SES, the evidence of low-SES adaptive functioning, historical precedents of the alternate pathways (neuroplasticity) interpretation of learning disabilities related to low-SES and the notion of deficit, issues of normativity and validity in findings of neurocognitive differences between children from different SES, and finally alternative interpretations of the complex relationship between IQ and SES. Particularly, we examine the extent to which the available laboratory results may be interpreted as showing that cognitive performance in low-SES children reflects cognitive and behavioural deficits as a result of growing up in specific environmental or cultural contexts, and how the experimental findings should be interpreted for the design of different types of interventions ā€“ particularly those related to educational practices - or translated to the public ā€“ especially the media. Although a cautionary tone permeates many studies, still, a potential deficit attribution ā€“i.e., low-SES is associated with cognitive and behavioral developmental deficits ā€“ seems almost an inevitable implicit issue with ethical implications. Finally, we sketch the agenda for an ecological DCN, suggesting recommendations to advance the field, specifically, to minimize equivocal divulgation and maximize ethically responsible translation

    Retooling computational techniques for EEG-based neurocognitive modeling of children's data, validity and prospects for learning and education

    Get PDF
    This paper describes continuing research on the building of neurocognitive models of the internal mental and brain processes of children using a novel adapted combination of existing computational approaches and tools, and using electro-encephalographic (EEG) data to validate the models. The guiding working model which was pragmatically selected for investigation was the established and widely used Adaptive Control of Thought-Rational (ACT-R) modeling architecture from cognitive science. The anatomo-functional circuitry covered by ACT-R is validated by MRI-based neuroscience research. The present experimental data was obtained from a cognitive neuropsychology study involving preschool children (aged 46), which measured their visual selective attention and word comprehension behaviors. The collection and analysis of Event-Related Potentials (ERPs) from the EEG data allowed for the identification of sources of electrical activity known as dipoles within the cortex, using a combination of computational tools (Independent Component Analysis, FASTICA; EEG-Lab DIPFIT). The results were then used to build neurocognitive models based on Python ACT-R such that the patterns and the timings of the measured EEG could be reproduced as simplified symbolic representations of spikes, built through simplified electric-field simulations. The models simulated ultimately accounted for more than three-quarters of variations spatially and temporally in all electrical potential measurements (fit of model to dipole data expressed as R 2 ranged between 0.75 and 0.98; P < 0.0001). Implications for practical uses of the present work are discussed for learning and educational applications in non-clinical and special needs children's populations, and for the possible use of non-experts (teachers and parents)

    Evaluating preschool visual attentional selective-set: Preliminary erp modeling and simulation of target enhancement homology

    Get PDF
    We reanalyzed, modeled and simulated Event-Related Potential (ERP) data from 13 healthy children (Mean age = 5.12, Standard Deviation = 0.75) during a computerized visual sustained target detection task. Extending an ERP-based ACTā€“R (Adaptive Control of Thoughtā€“Rational) neurocognitive modeling approach, we tested whether visual sustained selective-set attention in preschool children involves the enhancement of neural response to targets, and it shows key adult-like features (neurofunctional homology). Blinded automatic peaks analysis was conducted on vincentized binned grand ERP averages. Time-course and distribution of scalp activity were detailed through topographic mapping and paths analysis. Reaction times and accuracy were also measured. Adult Magnetic Resonance Imaging-based mapping using ACTā€“R dipole source modeling and electric-field spiking simulation provided very good fit with the actual ERP data (R2 > 0.70). In most electrodes, between 50 and 400 ms, ERPs concurrent with target presentation were enhanced relative to distractor, without manual response confounds. Triangulation of peak analysis, ACTā€“R modeling and simulation for the entire ERP epochs up to the moment of manual response (~700 ms, on average) suggested converging evidence of distinct but interacting processes of enhancement and planning for response release/inhibition, respectively. The latter involved functions and structures consistent with adult ERP activity which might correspond to a large-scale network, implicating Dorsal and Ventral Attentional Networks, corticostriatal loops, and subcortical hubs connected to prefrontal cortex top-down working memory executive control. Although preliminary, the present approach suggests novel directions for further tests and falsifiable hypotheses on the origins and development of visual selective attention and their ERP correlates

    Neural correlates of visualizations of concrete and abstract words in preschool children: A developmental embodied approach

    Get PDF
    The neural correlates of visualization underlying word comprehension were examined in preschool children. On each trial, a concrete or abstract word was delivered binaurally (part 1: post-auditory visualization), followed by a four-picture array (a target plus three distractors; part 2: matching visualization). Children were to select the picture matching the word they heard in part 1. Event-related potentials (ERPs) locked to each stimulus presentation and task interval were averaged over sets of trials of increasing word abstractness. ERP time-course during both parts of the task showed that early activity (i.e., <300 ms) was predominant in response to concrete words, while activity in response to abstract words became evident only at intermediate (i.e., 300-699 ms) and late (i.e., 700-1000 ms) ERP intervals. Specifically, ERP topography showed that while early activity during post-auditory visualization was linked to left temporo-parietal areas for concrete words, early activity during matching visualization occurred mostly in occipito-parietal areas for concrete words, but more anteriorly in centro-parietal areas for abstract words. In intermediate ERPs, post-auditory visualization coincided with parieto- occipital and parieto-frontal activity in response to both concrete and abstract words, while in matching visualization a parieto-central activity was common to both types of words. In the late ERPs for both types of words, the post-auditory visualization involved right-hemispheric activity following a "post-anterior" pathway sequence: occipital, parietal, and temporal areas; conversely, matching visualization involved left-hemispheric activity following an "ant-posterior" pathway sequence: frontal, temporal, parietal, and occipital areas. These results suggest that, similarly, for concrete and abstract words, meaning in young children depends on variably complex visualization processes integrating visuo-auditory experiences and supramodal embodying representations

    Brain immune interactions and air pollution: macrophage inhibitory factor (MIF), prion cellular protein (PrPC), Interleukin-6 (IL-6), interleukin 1 receptor antagonist (IL-1Ra), and interleukin-2 (IL-2) in cerebrospinal fluid and MIF in serum differentiate urban children exposed to severe vs. low air pollution

    Get PDF
    Mexico City Metropolitan Area children chronically exposed to high concentrations of air pollutants exhibit an early brain imbalance in genes involved in oxidative stress, inflammation, innate and adaptive immune responses along with accumulation of misfolded proteins observed in the early stages of Alzheimer and Parkinson's diseases. A complex modulation of serum cytokines and chemokines influences children's brain structural and gray/white matter volumetric responses to air pollution. The search for biomarkers associating systemic and CNS inflammation to brain growth and cognitive deficits in the short term and neurodegeneration in the long-term is our principal aim. We explored and compared a profile of cytokines, chemokines (Multiplexing LASER Bead Technology) and Cellular prion protein (PrP(C)) in normal cerebro-spinal-fluid (CSF) of urban children with high vs. low air pollution exposures. PrP(C) and macrophage inhibitory factor (MIF) were also measured in serum. Samples from 139 children ages 11.91 Ā± 4.2 years were measured. Highly exposed children exhibited significant increases in CSF MIF (p = 0.002), IL6 (p = 0.006), IL1ra (p = 0.014), IL-2 (p = 0.04), and PrP(C) (p = 0.039) vs. controls. MIF serum concentrations were higher in exposed children (p = 0.009). Our results suggest CSF as a MIF, IL6, IL1Ra, IL-2, and PrP(C) compartment that can possibly differentiate air pollution exposures in children. MIF, a key neuro-immune mediator, is a potential biomarker bridge to identify children with CNS inflammation. Fine tuning of immune-to-brain communication is crucial to neural networks appropriate functioning, thus the short and long term effects of systemic inflammation and dysregulated neural immune responses are of deep concern for millions of exposed children. Defining the linkage and the health consequences of the brain / immune system interactions in the developing brain chronically exposed to air pollutants ought to be of pressing importance for public health

    Air pollution and detrimental effects on children's brain. The need for a multidisciplinary approach to the issue complexity and challenges

    Get PDF
    Millions of children in polluted cities are showing brain detrimental effects. Urban children exhibit brain structural and volumetric abnormalities, systemic inflammation, olfactory, auditory, vestibular and cognitive deficits v low-pollution controls. Neuroinflammation and blood-brain-barrier (BBB) breakdown target the olfactory bulb, prefrontal cortex and brainstem, but are diffusely present throughout the brain. Urban adolescent Apolipoprotein E4 carriers significantly accelerate Alzheimer pathology. Neurocognitive effects of air pollution are substantial, apparent across all populations, and potentially clinically relevant as early evidence of evolving neurodegenerative changes. The diffuse nature of the neuroinflammation and neurodegeneration forces to employ a weight of evidence approach incorporating current clinical, cognitive, neurophysiological, radiological and epidemiological research. Pediatric air pollution research requires extensive multidisciplinary collaborations to accomplish a critical goal: to protect exposed children through multidimensional interventions having both broad impact and reach. Protecting children and teens from neural effects of air pollution should be of pressing importance for public health
    • ā€¦
    corecore