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This paper describes continuing research on the building of neurocognitive models of

the internal mental and brain processes of children using a novel adapted combination

of existing computational approaches and tools, and using electro-encephalographic

(EEG) data to validate the models. The guiding working model which was pragmatically

selected for investigation was the established and widely used Adaptive Control

of Thought-Rational (ACT-R) modeling architecture from cognitive science. The

anatomo-functional circuitry covered by ACT-R is validated by MRI-based neuroscience

research. The present experimental data was obtained from a cognitive neuropsychology

study involving preschool children (aged 4–6), which measured their visual selective

attention and word comprehension behaviors. The collection and analysis of

Event-Related Potentials (ERPs) from the EEG data allowed for the identification of

sources of electrical activity known as dipoles within the cortex, using a combination

of computational tools (Independent Component Analysis, FASTICA; EEG-Lab DIPFIT).

The results were then used to build neurocognitive models based on Python ACT-R such

that the patterns and the timings of the measured EEG could be reproduced as simplified

symbolic representations of spikes, built through simplified electric-field simulations.

The models simulated ultimately accounted for more than three-quarters of variations

spatially and temporally in all electrical potential measurements (fit of model to dipole

data expressed as R2 ranged between 0.75 and 0.98; P < 0.0001). Implications for

practical uses of the present work are discussed for learning and educational applications

in non-clinical and special needs children’s populations, and for the possible use of

non-experts (teachers and parents).
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INTRODUCTION

The primary goal of this paper is to report on continuing
research on the building of cognitive models of the internal
mental or brain processes of children by using the measurements
of electroencephalographic (EEG) data in order to validate
the models constructed. Furthermore, as a secondary but
consequentially related goal, this paper explores prospective,
possible implications in terms of designing useful neuro-
technologies for learning and education, with specific
consideration of two major themes currently debated in
education: personalization and inclusion. The presented data
were collected from neuropsychological experiments conducted
with children from 4 to 6 years of age, which measured their
visual selective attention and word comprehension in two
separate computerized tasks. The collection and analysis of
Event-Related Potentials (ERPs) from the data of scalp EEGs
allowed for the identification within the cortex of dipoles as the
sources of electrical activity.

In over fifty years of research, psychology, neuroscience,
cognitive science, and other allied disciplines have clearly
shown that to specify the neural/mental processes involved
in a task from a human agent, behaviorally manifested
differences in the extent of responses and their latency
are necessary but not sufficient (Frank and Badre, 2015).
Further steps are required to specify which structures and
which functional pathways are putatively involved (Griffiths,
2015). In principle, analysis of verbal protocols (Ericsson
and Simon, 1993), and other forms of verbal reports (see
Runge et al., 2017) could be used to build converging validity
for neurocognitive models using the “phenomenology-neural-
behavior triangulation” (see Flanagan and Dryden, 1998).
However, determining all these elements in young (i.e., infants
and preschoolers) children escalates complexity further. This
is where the present study, involving neuro-computational
modeling (henceforth shortened as neurocognitive modeling),

comes into play. A background question permeating this
work concerns how much reduction is tolerable in order
to achieve models that could one day be relatively easily
implemented for real-world, practical applications for learning
(ideally by users such as, for example, educators, teachers, and
parents or the learners themselves, the children). For these

reasons, the present work assumes the very pragmatic tactic of
combining already existing and validated computational tools in
a novel way.

As the starting point, the guiding working model which

was pragmatically selected for investigation was the established
and widely used ACT-R cognitive modeling architecture (ACT-
R research Group, 2019). The MRI-based circuitry covered by
ACT-R (see Figure 3) overlaps considerably with the circuitry
considered and studied by many neuroscience research programs
(see Borghi et al., 2013) independently from computational and
modeling applications. The advantage of such an approach is
that the correlates considered could in turn be modeled and
verified as functional pathways through the building blocks of
ACT-R. And of course, the results of the modeling can feed back
to inform theory about neurocognitive functions and structures

(for examples see Polk and Seifert, 2002). This cycle informed
the design of the present study and is represented graphically
in Figure 1.

As represented in the process flow of Figure 1, from the initial
collection of children’s EEG data in an experiment involving
two tasks measuring aspects of different but related cognitive
processes, using a type of Independent Component Analysis
(Jung et al., 2001) we extracted and isolated single-trial ERPs and
identified dipoles, indicating their likely sources within the cortex
and other (Subcortical) parts of the brain. We then mapped this
information onto a generalized ACT-R neurocognitive model
with multiple interactive components. At the same time, from
scalp single-trial ERPs from the three key brain cortical areas
postulated in ACT-R, we simulated simple spike representation
using a reductionist electric-field estimation procedure, which
allowed us to reconstruct the cortical activity over time for the
two tasks as it would happen in each individual trial. Finally,
we compared the neurocognitive model and the reconstructed
activity to assess whether the two types of results could be
coherently integrated as a whole product.

The need for relatively precise spatial localization and
connectivity in the model was further insured by adopting
basic neural-spiking simulation techniques to be able to confirm
the following: (1) the time latency of ERP activity linked
to the identified patterns of activation within the ACT-R
architecture; and (2) validity of the postulated meaning of the
ERP components (i.e., higher amplitude reflecting the relevant
increased neural recruitment in the involved structures). Our
expectation was that the combination of already popular and
widely used modeling approaches would provide converging
evidence supporting the hypothesized processes of attention and
acquisition of the word meanings and implicate a network of
connections overlapping in key cortical networks, in particular,
those involved in the occipital-temporal-prefrontal long-range
connections (see Table 1, and Figure 1) shared by the two types
of tasks in developing brains (see D’Angiulli et al., 2015). For
the latter reason, in this paper we focused our analyses on the
selected electrodes of interest corresponding to the main cortical
areas involved in those neural networks.

MATERIALS AND METHODS

In the following “Experiment” subsection, we describe two
behavioral tasks with a sample of young children: one measured
the activation of the sensorimotor and perceptual systems
engaged in a visual selective attention task, the other task
measured linguistic-conceptual and semantic memory systems
engaged in a word-verification task. Both tasks were part of a
large developmental cognitive neuroscience research program,
and were published as primary data analysis reports elsewhere
(Van Roon and D’Angiulli, 2014; D’Angiulli et al., 2015). In
what follows, we provide a summary of the essential steps to
illustrate how the entire protocol can be replicated. However,
readers interested in more details on the human experimentation
side should consult the cited reports. ERPs were extracted from
continuous EEGs time-locked to the task stimuli, to identify
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FIGURE 1 | Process flow representation of the present study.

TABLE 1 | Times and locations of modules in ACT-R model for selective attention

and PPVT tasks.

Region(s)

Time

(ms)

Viewing pictures

(attention and PPVT)

Word verification

100 Occipital/Basal, Bilateral Bilateral Occipital/Right Frontal

125 Parietal/Basal, Bilateral Parietal/Basal, Bilateral

170 Right Occipital/Left Frontal Right Occipital/Left Frontal

220 Basal, Bilateral —

280 Parietal/Frontal, Bilateral Left Frontal/Left Occipital/Right Temporal

320 Right Parietal/Right Temporal Left Frontal/Left Occipital/Right Temporal

380 Left Parietal Left Frontal/Left Occipital/Right Temporal

690 Left Occipital/Left Basal Left Occipital

850 — Right Occipital/Bilateral Temporal

the sources of electrical activity within the cortex known as
dipoles. Subsequently, in the subsection titled “Neurocognitive
Modeling,” we describe how the results of the experimental tasks
were used as secondary data analysis and manipulation to build
neuro-computational models that could reproduce localizations,
dynamic connectivity among areas, patterns of neural spiking,
and timings of measured EEG (see Figure 1). An important
point of difference with the previously published results is that
we present here novel analysis focusing on selected samples of
the best instances of observed single-trial ERPs (across different
subjects) as identified by a type of ICA. That is, in creating the

models we did not use grand averages of already-averaged ERPs
across all trials.

Experiment
Participants
Participants were initially selected from a prospective cohort of
children recruited in the context of a separate, non-overlapping,
larger research program on early development screening
(D’Angiulli et al., 2009). Based on the extensive developmental
literature (Bornstein and Lamb, 2011) and given the scope of our
study, we identified as the optimal target developmental period
the one corresponding to the age range of 4.5–6.5 years. To
recruit the initial pool of participants, an information package
was distributed to all parents whose children attended the same
daycare of amiddle-sized Canadian city. This study was approved
by the institutional research ethics boards of Thompson Rivers
University and Carleton University in accordance with the
1964 Declaration of Helsinki ethical standards and the Tri-
Council Policy Statement (http://www.pre.ethics.gc.ca/pdf/eng/
tcps2-2014/TCPS_2_FINAL_Web.pdf). Parents signed a consent
form and completed a brief questionnaire on demographic and
socioeconomic information about their family, including a clause
to consent to this follow-up study including collecting EEG, and
behavioral and cognitive measures from their children. Materials
explaining what was involved were included in the package
and presented at the daycare to teachers and parents during
small information sessions. Thus, only general information about
the present study was provided to our target families and
children. Hypotheses and purposes of the study were only given
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(verbally to children and through a written take-home page to
parents) at debriefing after the study but not at the recruitment
stage. After screening for the families’ socioeconomic and
demographic background information and individuals’ daycare
records, the prospective participants were matched by age,
gender, ethnicity, reported health/physical development and
“computeracy” (ownership and use of internet and computers,
including video gaming). Thirty families were then re-contacted
by mail, of which seventeen returned completed and signed
consent for the present study. Children were given a gift card
of $5 for their participation and also received a book of stickers
at the end of the study. Written parental informed consent
and the children’s active assent was obtained according to a
protocol approved by research ethics boards from all of the
involved institutions.

The final sample of 13 children [nine boys; four girls;
mean age (SD) = 5.10 (0.75)] was obtained after exclusion of
three (female) participants from the initial sample of 16 (two
children had an insufficient number of artifact-free or artifact-
corrected usable EEG data and/or did not meet the minimal
required performance level (accuracy >75%) in one task, hence
their data were discarded after preliminary diagnostic analysis).
Following strict inclusion criteria, participants were carefully
selected to represent, despite some age variation, a relatively
homogeneous group of healthy, typically-developing children.
The participants scored all within 0.5 standard deviations
from the mean on the following standardized age-normed
control measures: parents completed the Behavioral Rating
Inventory of Executive Function—Preschool Version (BRIEF-P)
from Psychological Assessment Resources (PAR), Inc. (Gioia
et al., 2005); and the preschool Child Behavioral Checklist
(CBCL/1½−5 years; Achenbach, 2009). In addition to the
above measures, the participants exceeded expectations in
the Early Development Instrument (Janus et al., 2007) in
all developmental domains (i.e., physical health and well-
being; social knowledge and competence; emotional health and
maturity; language and cognitive development; communication
skills and general knowledge).

Furthermore, according to parent reports and daycare
records, the participants were typically-developing children with
no history of medication or referral to disability assessment or
services. All were Caucasian with normal or corrected-to-normal

vision and no hearing or other known sensory impairments.
The children lived in the same neighborhood, corresponding
to the same catchment area for the daycare center they
attended. All children were from middle-upper class family
socioeconomic backgrounds.

Apparatus and Procedures

Behavioral tasks
For the visual selective attention task, the method followed
the standard protocol of Akshoomoff (2002) represented in
Figure 2A. For this task, children viewed a computer screen
which displayed either a picture of a duck or a picture of a turtle
that remained on the screen for 500ms and was followed by
a 500ms ISI. Children were instructed to watch the computer
screen and, every time they saw a duck, to push a button, and
not to push the button if they saw something else (this requires
that children ignore irrelevant stimuli while paying attention to
the target stimulus). For one quarter of the trials a duck was
displayed, and for the remaining three quarters a turtle was
displayed. Each child was given 12 trials or practice periods,
followed by 150 trials each.

The task of word verification was a computerized version
of the standard Picture Peabody Vocabulary Test (PPVT-III),
which measures receptive vocabulary and word comprehension
(Dunn and Dunn, 2007). The test includes 19 sets, each set
includes 24 items: 24 target words presented aurally and 24
corresponding displays containing four-color pictures arranged
on the screen, with each picture having a rectangular frame
with a different color (spatial layout and colors of frame were
randomly shuffled from trial to trial). For each trial and item in
a stimulus set, children were seated in front of a computer and
heard a word over insert headphones (with sound set at 70 dB).
They were then asked to decide which one of the four pictures
on the computer screen corresponded to the target word (see
Figure 2B). Children were instructed to verify the meaning of the
target spoken word by selecting the picture that best illustrated its
meaning by clicking on a response keypad having four buttons
with colors matching the color-coded frames inscribing the
stimulus pictures. All children were instructed to consider all the
buttons appropriately to give the correct manual response. The
words were prerecorded from the voice of an English-speaking

FIGURE 2 | (A) Visual selective attention task. (B) Computerized version of the Peabody Picture Vocabulary Test.
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female experimenter at a rate of 250Hz. Each new trial was self-
initiated, upon pressing any button in the response keypad. A
set was completed successfully unless three consecutive words
were incorrectly verified; in this event, the test was discontinued
and the particular set was considered the maximum performance
level assigned to the subject.

The stimulus sets are arranged in order of increasing
abstractness and complexity as operationally reflected in
difficulty so that the task can be calibrated to the participant’s
appropriate vocabulary level (norm-based critical range). The
strong relationship of the type of processes measured by
the PPVT and language comprehension has been well-
documented (e.g., Carroll, 1993; Kamil and Hiebert, 2005).
Accordingly, correlations between PPVT and kindergarten
language comprehension are typically very strong (median r
> 0.65, see Dunn and Dunn, 2007). Thus, performance on
PPVT is very unlikely to reflect just shallow linguistic processing
in preschool children. This is also abundantly confirmed
by overwhelming evidence in the context of aphasiology,
intelligence, and clinical neuropsychology literature in both
children and adults—research fields in which, at least for the last
three decades, the PPVT has been used as a criterion measure of
semantic elaboration.

In both tasks, the children were all tested individually in a
sound-proof electromagnetically-shielded EEG booth. Each child
was positioned in front of the computer so that his or her
eyes were ∼38 cm from the screen. Children were reminded
of instructions or could communicate with experimenters and
attending parents in the adjacent control room through an
intercom speaker system (parents and experimenters had a back
view of the child through a window but also had a frontal and
facial view through a Bluetooth camera). The children were
reminded of the importance of not speaking, moving/turning
their head, clinching teeth, or blinking soon after they had given
their manual response and before initiating a new trial. Each task
required five minutes for completion.

EEG Data Acquisition and Recording Procedures
The EEG was recorded with EEG Quick caps with Ag-AgCl
electrodes (Compumedics Neuroscan, Charlotte, NC, USA).
Each participant had 11 Ag-AgCl electrode sites (Cz, F3, F4,
Fz, O1, O2, Oz, P7, P8, Pz, T7, and T8) applied according to
the 10–20 system of electrode application (Nuwer et al., 1998)
as used previously (e.g., D’Angiulli et al., 2008, 2013). The
decision of having the number of electrodes smaller than 32 was
dictated by previous work and pilot studies in children of similar
ages, showing no critical loss of reliability in source analysis
results (Griffiths et al., 2011). All electrodes were referenced to
nose tip. Impedances were kept below 5 kOhms. The vertical
electrooculograms (VEOG) were recorded from two split bipolar
electrodes on the left and right supraorbital ridge (VEOGU, L and
R) as well as the left and right zygomatic arch (VEOG, L and
R). The signal from the electrodes was amplified and digitized
by a SynAmps2 and a SCANTM 4.3 EEG system (Compumedics
Neuroscan, Charlotte, NC, United States), with filter settings at
0.15Hz (high pass) and 100Hz (low pass). The data from all
channels were digitized online at a sampling rate of 1,000Hz.

EEG artifact reduction
Ocular artifact reduction was conducted through the eye-
movement correction included in the EEGlab package (Delorme
andMakeig, 2004). To verify, confirm reliability, and validate our
procedure, we correlated our edited data to the data obtained
with two additional independently conducted procedures: a
manual eye-movement rejection based on visual-score scanning
procedure, and on the eye movement reduction algorithm
devised by Semlitsch et al. (1986), which consists of constructing
an average artifact response and then subtracting it from the
EEG channels on a sweep-by-sweep, point-by-point basis. The
agreement between the edited data with our procedure and the
two confirmatory procedures was high (r = 0.89 with artifact
rejection and r = 0.95, both p < 0.0001).

General ERP processing and analysis
In this section we describe procedures and analysis parameters
that did not vary depending on the nature of the EEG/ERP data,
the more specific approaches to the data relative to each subset of
tasks are described in the relative sections of the results.

The electrode locations were mapped using the EEGLAB
BESA standard-10-5-385 cap model. Each participant’s EEG was
epoched (200ms pre-stimulus and 1,000ms post-stimulus) and
averaged with respect to the event of interest, which acted as
the anchor for the epoching (the stimulus or 0ms mark). For
the attention task, the considered epoch was anchored on the
presentation of the duck or turtle. For the PPVT task, there were
two types of epochs: one anchored on the presentation of the
word and the other anchored on the subsequent presentation of
the four-picture display. Baseline correction was based on the
200ms pre-stimulus interval.

The analysis of the EEG data was conducted using EEGLAB
software from theUniversity of California, SanDiego, which runs
on the proprietary software MATLAB (Delorme and Makeig,
2004). Event-Related Potentials (ERPs) were then derived from
the continuous EEG recordings using two complementary
averaging techniques: (1) Grand averaging of averaged ERPs
across subjects; (2) averages of single-trial ERPs across subjects.
Performance accuracy rates (>75%) insured that the children
carried out the tasks at threshold in pressing the button
when appropriate.

For each task, the quantification of the effects was based on
maps representing normalized averaged scalp electrical activity
(see below), as well as on essential analysis including separated
focused contrast analyses using Z (standard normal deviate)
tests or t-tests. The latter procedures were used to calculate
the mean standardized difference (in micro-volts) needed in
each electrode location in order for the neural activation
patterns to be significantly different from one another; such
differences can be directly interpreted as effect sizes in the
samemeaningful metric (Shadish and Haddock, 1994). Contrasts
between mean amplitudes were conducted just for the time
windows of interest but took into account standard deviations
and standard errors of the baseline mean across the entire ERP
epochs. Additionally, for ease of interpretation, some of the
standardized mean differences valid for all the simultaneous
multiple comparisons between types of events are indicated in
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the depiction of the ERP waveforms in the Figures. p-values were
corrected for multiple comparisons using the Simes-Bonferroni
procedure (Simes, 1986).

Neurocognitive Modeling
In this section, we describe methods used for building the
neurocomputational models (neurocognitive model, in short)
of visualization correlates for both the attention and the word-
verification tasks we used. The observed EEG/ERP results from
the two tasks were used to build models to identify sources
of task-related ERP activity (electrical energy), and then to
reproduce the pattern and timings of measured ERP peaks.

Independent Component Analysis
Further analysis consisted of Independent Component Analysis
(ICA) of single-trial ERPs (Jung et al., 2001) as well as subsequent
ICA for components of ERPs. This technique mathematically
determines sets of discrete separate functions that may efficiently
explain all measurements as signals which are maximally
independent (the FASTICA algorithm was used, Hyvärinen
and Oja, 1997). As an example, a single middle occipital area
was discerned from the initial simultaneous reaction of three
posterior electrodes. While the location and the timing of
components can be calculated with ICA, a magnitude which is
absolute cannot be estimated similarly, as there inherently exists
an ambiguity between component magnitude and attenuation
from it to the point of measurement.

ACT-R Framework
ACT-R, as developed by John R. Anderson, provides a system for
modeling that is commonly used in cognitive science (Anderson
and Lebiere, 1998). By this architecture, cognition arises
from parallel interactions of modules which are independent.
Procedural memory is modeled as a system of production by
ACT-R, and specifically one of rules—namely, rules of if/then.
A system of buffers and chunks manages communication both
to and from the Procedural Model (see Figure 3). In ACT-R,
chunks are composed of short lists of information which are
predicated (i.e., a chunk could so represent the word “dog” as
“Is a”:dog, “Name”:Fido, “Color”:brown, “Size”:large). A buffer can
contain only one chunk at a time. At least one buffer exists for
every module, and therefore a buffer that is visual, and another
that is auditory, and another that is declarative, and so forth.
Buffer instructions are received by the modules, which send their
own results of activity to the buffers. Altogether, buffers may be
regarded to form the working memory; they can alternately be
considered to represent the current task context. When an “if
condition” matches the buffer content, productions are said to
“fire.” Buffer content is altered by the part of production known
as “then.” Each production requires 50ms, and productions
can fire only one-by-one. Module functions serve to determine
the time required of each module to return a result. If for
example a specific memory is requested by a production from the
Declarative Memory Module, a stronger memory will deliver the
results sooner. ACT-R therefore renders strong predictions about
internal events.

FIGURE 3 | The organization of information in ACT–R.

The standard version of ACT-R was written in LISP. However,
we adopted Python ACT-R, which is a recent re-implementation
of the architecture (Stewart and West, 2005). This supports
most of the functions of ACT-R release six while allowing
programming in a more compact and accessible syntax using the
Python language.

Module Localization
The term “module” is here defined as a function which is local
to some area and which also links with a given task process
(as distinct from the language modules of Chomsky or the
domain-specific modules of Fodor) but which is similar to the
generalization offered by Kosslyn (1994). Functional Magnetic
Resonance Imaging (fMRI) has accounted for much of the
research as it links ACT-R module activity to areas specific in the
brain. [The relevant papers can be found on the website for ACT-
R (ACT-R research Group, 2019). Those estimates for module
location which are proven the best are found listed in (Anderson
and Byrne, 2004). In addition, an exhaustive review of these brain
area functions can be found in Anderson (2007)]. As an example,
the central coordinator for productions is determined to be the
caudate of the basal ganglia. Hippocampal control is responsible
for declarative memory, whereas attention toward conflicting
stimuli is controlled by the anterior cingulate cortex. Declarative
memory finds its support from the frontal cortex, whereas visual
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processing occurs within the occipital lobe along with additional
processing in the parietal lobe (Figure 3).

FMRI is ideal for the use of localization. It is, however,
generally recognized as being too slow for the detection of events
as they would fall within the timeframe of ACT-R. Anderson
has avoided this limitation by electing to model the prospective
BOLD response in accordance with module activation time
course (Anderson et al., 2003), yet this approach nonetheless
involves a delay mismatch in real time, as the recording of
activation lags behind the processing of cognition by some
seconds. And even the so-called event-related fMRI still has a
time resolution that is effectively inferior to the one obtained by
EEGmeasurements. Herein, we intended to explore with EEG for
much the same reasons, so as to capitalize on the superior time
(millisecond) resolution of ERPs. (For a different, but successful
example of ERP-based ACT-R modeling, see Cassenti, 2007;
Cassenti et al., 2011).

Dipole Location
Dipolar analysis was applied for identifying the location of areas
of the brain as indicative of the origin of the signals. “Dipole” is a
term in physics that refers to one pair of charges which are closely
spaced, one being positive and the other being negative. The
dipole can create an electrical field, or voltage, at a given distance
depending upon the strength and the orientation. One section of
the brain can possess many thousands of neurons oriented in a
single direction and firing all at once. It may represent a cortical
column, a lower structure nucleus, or a ganglion belonging to the
basal ganglia, for example. In their firing. these neurons produce
voltage, to be measured as EEG in surface scalp electrodes (see
Onton and Makeig, 2006). In EEGLAB, the component titled
DIPFIT was employed for the estimation of a set of dipoles
in both single-trial and average data of ERP to explain the
independent components which were extracted. The dipole is
defined as a region of the cortex wherein many thousands
of neurons act in parallel such that their total electrical field
amounts to the scalp measurement of EEG. DIPFIT regularly
locates one or perhaps two dipoles for each specific region
as it appears to have produced the independent individual
components in each single trial. The MRI-based spherical head
model with standard Tailarach coordinates appropriate to age as
of EEGLAB was chosen.

Electric-Field Modeling
The next stage was to create a model that reproduced the average
ERP activity measured across participants using extraction of
single-trial ERPs. An ACT-R model of the process would, at
minimum, predict that the visual module (occipital) would
be activated by the displayed picture and would place a
representation of the picture in the visual buffer (parietal).
Next, the “parietal” representation would be used to retrieve the
instruction about what to do for that animal from declarative
memory (temporal), which in turn would be placed in the
declarative memory buffer (frontal). For our purposes, the model
was primarily built to reproduce the electrical activity measured
rather than behavioral results.

FIGURE 4 | Calculating an electric dipole field.

In the neurocognitive model, each module was assumed
to generate between one and two dipoles in the dipole-fitting
stage of location identification for the simulation of electrical
activity. It was believed that the module produced its electrical
energy in the rising and falling of a wave. For the purpose
of modeling, there was an assumption of a basic triangular
wave, with its peak at the module center (simplified spike
model). The resultant electrical field or voltage was thereupon
calculated at the surface head of each electrode as the total sum
contribution of the individual dipoles. Since the peak activities of
the components occurred at different times in the observed data,
it was not necessary to add the effects of more than one dipole at
a given time.

(i) The estimation of independent dipole effect reads as below
(see Figure 4): The square of the distance (r) from electrode
to dipole as obtained from Pythagoras is calculated.

(ii) The square of the distance (r) from electrode to dipole as
obtained from Pythagoras is calculated.

(iii) The electrode potential of the dipole is calculated from
Coulomb’s law (i.e,: k × p × cos(θ)/r2), where p equals the
dipole strength while k remains constant. It is unnecessary
to determine the value of the constant as the models employ
relative magnitude.

(iv) Lastly, ERP signal simulations were compared to
experimental measurements.

Elsewhere, we have provided proof-of-concept demonstrating
that the above method can be used consistently to describe
internal neural activity (Griffiths et al., 2011). In this paper, we
extend that preliminary work by showing that the set of building
blocks are stable across diverse tasks and can be used to reproduce
results for further tasks.

RESULTS

Behavioral Data
Descriptive analysis on the behavioral data showed that for the
attention task, accuracy was very high (M = 89.85%; SD = 5.03)
and relatively rapid (mean RTs = 745ms, SD = 366.17). Age
correlated significantly with accuracy [r(13) = 0.61, p < 0.05]
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but not with RTs. On the longer PPVT task, children took on
average 3.5 s (SD = 0.78) to respond from when the picture set
was presented. Similarly as with the attention task, accuracy was
relatively high as all children completed successfully between 2
and 6 sets of target words, with most children being within ±1
SD from themean in terms of age-normed standard scores. There
was no correlation between age and performance accuracy or RTs
on the PPVT test.

ERP Data
Constrained by our modeling approach (see sections Dipole
Location and Electric-Field Modeling), our ERP analysis focused
selectively on the electrodes corresponding to the brain areas
hypothesized and tested by ACT-R. We therefore report only
significant results concerning those electrodes of interest for the
hypothesized models and test thereof. For results concerning the
entire EEG montage across the scalp, we refer the readers to the
aforementioned published reports.

For the attention task, grand averages of the ERP were
calculated for the duck and turtle events, and the latter were
then plotted as scalp maps. The array of scalp diagrams in
Figure 5 shows the response for the duck (top) and turtle
(bottom). The maps are views of the scalp from the top of the

head and oriented with the anterior (frontal) areas at the top
of the circle and the posterior (occipito-parietal areas) at the
bottom. They are plotted as a function of time at every 100ms.
These provide a global dynamic view of the neural activity
for all subjects during the tasks and therefore show several
interesting features.

In the attention task, at 100ms, both duck and turtle ERPs
showed a high bilateral response in the posterior area, suggesting
visual processing of the duck/turtle image. That was followed
at 200ms by strong frontal activity, perhaps indicating working
memory determining the course of action. At 700ms there was
more bilateral frontal activity coinciding with the typical button
press time. Focused contrasts revealed the strongest bilateral
effects in the midline electrodes. The graphs in the middle of
Figure 5 show the largest significant differences (the shaded areas
in the figure) between attended (duck) and unattended (turtle)
waveforms in the midline electrodes: between 300 and 500ms in
the occipital electrode, between 400 and 600ms, and between 600
and 800 in the parietal electrode, and between 500 and 1,000ms
in the frontal electrode [all contrasts: t(13) > 2.27, p < 0.05]. On
average, the largest peak amplitude detected in the examined time
windows was 28.4 µV (relative to baseline activity estimated at
Z = 2.60, p < 0.01).

FIGURE 5 | Bottom and top arrays: Scalp maps for selective attention task events (turtle, depicted with dashed lines, and duck, depicted with solid black lines). The

graphs in the middle show ERP waveforms corresponding to the scalps at selected midline electrodes. Dark blue and red scalp areas represent significance at p <

0.05 in the Simes-Bonferroni corrected T-test band across the entire epoch (see text). We next focused our analysis on the two key proposed predictions. Figure 6B

shows waveforms concurrent with the word-verification event for concrete and abstract sets of PPVT words, wherein the more concrete words included only items

from the first set, and the more abstract included only items from the very last set successfully completed by each subject; given that the number of trials was

reduced, the ERPs were smoothened to allow for a clearer evaluation of effects critical to this context. The most important and significant differences are highlighted in

Figure 6C with gray frame boxes, for the site where the largest activation was detected through scalp maps, at the right occipital electrode (O2). As predicted, there

was higher positive activation concurrently with concrete than with abstract words in the first 100ms of the PPVT task [t(13) = 6.52; p < 0.0001]. Conversely, there

was higher positive activation concurrently with abstract than with concrete words in the 750–850ms interval [t(13) = 7.71; p < 0.0001].
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FIGURE 6 | (A) Scalp maps for the word-verification task events (viewing pictures and verifying the word). (B) Filtered single-trial ERP waveforms of correct vs.

incorrect word-verification trials at electrode FZ. (C) Filtered single-trial ERP waveforms for the verification of concrete and abstract words; the gray dashed-line frames

show regions of significant effects (see details in text).

Grand averages for the ERPs of the PPVT were calculated
and plotted as scalp maps as well. Figure 6A shows scalp
maps for the event interval between presentation of the word
and presentation of pictures (i.e., picture verification), and for
the event of seeing the pictures display (i.e., PPVT pictures).
Strikingly, the maps for ERPs concurrent to seeing the PPVT
pictures are virtually identical to those observed concurrent to
the viewing of the turtle—that is, the distracter event during
attention (compare the bottom arrays of scalp maps in Figures 5,
6A against each other). Nevertheless, the maps for the word
verification event show early co-activation of opposite polarity
in right anterior and bilateral posterior electrodes from 100 to
200ms. After 300ms, the activity spread out mostly in the right
side across the centro-parietal and temporal electrodes. To verify
that deep elaboration occurred, the bottom panel of Figure 6
also displays (unfiltered) ERPs after hearing the target word, split
by correct and incorrect PPVT trials, at Fz which was the most
representative electrode. In the window between 400 and 900ms,
although the direction of the effect is reversed at about half of this
interval, there is a significant difference between the waveforms
of correctly and incorrectly identified words [the maximal effect
is similar across, that is, a mean difference of about 5 µV,
t(13) = 4.23, p < 0.01].

The maximum value of the ERP voltage for each of the
participants was computed between 0 and 200ms at electrode O2
during the attention task, collapsed across correct duck and turtle
trials. The participants were then subdivided into two groups
based on the median split of the ERP voltage: one Low and one
High early activity group; the PPVT concrete vs. abstract analysis
was re-run separately for the latter two groups. The two graphs
in Figure 7 show the ERPs at electrode O2, corresponding to
PPVT event word-verification. The top graph shows the PPVT
O2 ERPs for the seven subjects in the Low early activity group.
The second graph shows the ERPs for the seven subjects in the
High early activity group. In both graphs, the blue stands for the
concrete PPVT word set (first set) and the red for the abstract
(last set), as in the analyses presented previously. Confirming our
second main prediction, at electrode O2 the late ERP activity
(750–850ms interval) was significantly higher for concrete than
for abstract word verification in both groups [High: t(13) = 4.00,
p < 0.001; Low: t(13) = 3.11, p < 0.01]. The effect size of the
difference in late ERP activity between concrete and abstract
word-verification was again predicted by the early ERP activity
(0–200ms interval) during the attention task. The individual
variation of early perceptual/attentional processing predicted the
variation of late activity related to word-verification, within the
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FIGURE 7 | (A,B) Filtered single-trial ERP waveforms during the concrete vs. abstract word-verification task in high and low early activity groups. (C) Scalp map of

single-trial ERP activity during the attention task and representation of predictions (black arrows) of the ERP differences in the regions shown by the black outline

frames. Bidirectional black arrows represent statistical comparison (“n.s.”: non-significant).

High early activity group (r= 0.83) as well as within the Low early
activity group (r = 0.76). Importantly, when the effect sizes of
the differentials of activity corresponding to concrete vs. abstract
words were compared in the two groups (graphically represented
by the bidirectional arrows in the right panel of Figure 7), this
test did not yield significant differences (Z = 0.27; p = 0.79),
showing that the level in early activity was similarly predictive
of late activity in both groups.

Control Comparisons Between Behavioral
Data, Subject Data and ERP Data
Several multiple regression analyses were run to test possible
associative relationships of ERP and EEG frequency bands
(event-related band power analysis) with a host of control
variables such as age, accuracy, and RTs on the tasks, as well
as subjects’ profiles used for screening and sample selection
(CBCL, BRIEF-P, EDI). All effects were far from being significant
(all p’s > 0.50). This result showed that in the main findings
we have reported above these other factors were not likely to
be confounding.

Modeling Data
Application of the ICA routine yielded from the experimental
data between 8 and 13 separate components for ERP activity
related to both attention and word-verification tasks, averaged
across subjects. Only for a short period of time were the

independent components resolved to be active. Their modeling
was thereby facilitated as for separate minimally overlapping
processes. The presence of each component was verified either
by one or two dipoles through running the DIPFIT routine.

Simulation of EEG activity was achieved by construction of
a computer model comprising eight modules, corresponding to
those components found to be most prominent. When activated,
each individual module was assumed to produce one or two
dipoles lasting for its duration. Activation was modeled as a
simplified spike, rising linearly to a peak and then dropping at
the same rate. Dipoles were assumed to have been generated at
the DIPFIT estimated location consistently with the locations
assumed to be standard in ACT-R. The Talairach database
was applied to map the corresponding regions of the brain
(Lancaster and Fox, 2010). The models matched the distribution
of experimentally measured potentials reasonably well. Overall,
the models accounted for more than 75% of the spatial and
temporal variation of electrical potentials; the model for dipole
data fit expressed as R2 had a range of between 0.75 and 0.98—a
fit of excellent quality when it is considered that the calculations
contained many approximations and simplifications. An analysis
of sensitivity suggested that measuring the scalp EEG voltage to
±10% precision would result in localizing a dipole within 2–
3mm. In particular, we were able to isolate three key processes
associated with particular events during the tasks, which are
detailed next.
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FIGURE 8 | Left top: Spatial resolution and time course of the single-trial ERP component derived with ICA for early positive activity during the attention task for the

target (duck). Right top: Dipole location. Bottom Left: Electric-field model of the component.

FIGURE 9 | Left top: Spatial resolution and time course of the single-trial ERP component derived with ICA for late positive activity during the attention task for the

target (duck). Right top: Dipole location. Bottom Left: Electric-field model of the component.
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FIGURE 10 | Left top: Spatial resolution and time course of the single-trial ERP component derived with ICA for late positive activity during the word-verification task.

Right top: Dipole location. Bottom Left: Electric field model of the component. As far as the simulation results for the PPVT task (auditory-word perception followed

by word verification process), Table 1 contains all the processes that were required to simulate the complete ERP signal for one epoch. Each line corresponds to one

module within the cognitive model having the source location of one or of two electric dipoles. The times as they appear represent peaks in activity for every module.

FIGURE 11 | Reconstruction of most relevant ERP peaks as identified by ICA through electric field modeling for the two main phases of the PPVT task, auditory

processing of the word (bottom panel), followed by picture processing (top panel) (also refer to Table 1 above).
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Figures 8–10 present the most relevant results of the
source analysis and simulation against the experimental results,
specifically, during (1) perceiving and attending to the picture of
the duck or turtle as well as the PPVT pictures, and (2) verifying
abstract words. The top left-hand plots show contour lines of
an ICA-derived single-trial ERP averaged over the subjects for
the same target (the picture of the duck), but measured at
different locations and at different times during the attention
task. The views are from above, with the nose at the top of the
diagram and the ears at the side. Darker areas indicate more
positive voltage responses in the ERP. The bottom left-hand plots
show the electric fields calculated from the model for those four
modules. The times selected are the peaks of activity for those
assumed to underlie the neurocognitive modules. On the right
hand, the locations of the dipoles responsible for the fields are
shown as small inverted pin symbols with lines indicating the
orientation-positive polarity of voltage.

A single dipole explained the strong response at 100ms
concurrent with processing pictures in both tasks. The location of
this dipole was in the posterior head in correspondence with the
occipital areas as anticipated for attention and visual processing.
The independent component in its time course produced a
single spike at 100ms, with negligible activity before it or after.
It was therefore possible to model it in the form of a simple
spike at 100ms, reaching 50ms on either side, and otherwise at
zero (see Figure 8). Similarly, for verification of abstract words
spike activity was isolated but deeper (see 3D representation in
Figure 10) in the temporo-occipital area. For the attention task,
another process was isolated in the frontal lobes with another
clearly identified spike at about 700ms (see Figure 9), the latter
appearing appears quite distinct from late occipital responses.

The output of the simulation closely reproduced the scalp
electrical activity as measured in the experiment. In fact, the
bottom panel of Figure 11 shows the electric field simulations
next to the dipole analysis for the two types of events. The main
three components we have described above are integrated with
others in the simulation of the entire waveform. Importantly, two
of these components, the early and late positivity, are observed
during perception and word comprehension. The component
representing themanual response shows clearly a different timing
than that for late positive activity; this result is important because
it rules out possible confounding factors between imagery and
motor processes.

DISCUSSION

The present findings suggest that the EEG data of children
can be simulated with use of a neurocognitive model, which
assumes for each process that one to two electric dipoles
are generated where the center of functionality is to be
found for that function. Functionality mappings of ACT-R
were proven to be robust in their use for EEG modeling.
The standard locations of functions and the timings for
productions were applicable. The experimental work described
throughout this paper utilized results obtained from children
which were first employed for the measurement of executive

functions. Since the tasks may be considered relatively easy for
children, the data may be considered optimal for the modeling
of the cognitive processes of young children. Other future
studies in modeling might make use of longitudinal results
from the data of children and adults to offer a means of
comparison in order to provide a test bench comparison of how
modules may more specifically change throughout the course
of development.

Adult neurocognitive modeling has usually been conducted
for the purpose of the reproduction of averaged outward
experimental behaviors of participants including response times
and error rates. If, however, the objective is to simulate internal
processes, it is advised that participants’ differences (individual
differences) be effectively considered. Our data of individual
children showed that there were large individual differences
in the processes taking place in the brain. For example, the
activity in their pre-frontal areas revealed large variability
between individuals (see Griffiths et al., 2009; D’Angiulli et al.,
2010). These kinds of differences would have to be taken into
consideration during any modeling specifically of individuals for
personalized neurotechnologies (see the discussion as below). For
example, ACT-R models usually only contain productions that
are related to the task at hand. To reproduce the overall brain
activity during the task, other processes such as environmental
checks taking place in the brain need to be incorporated.
It will therefore also be necessary to render tasks simple to
ensure that consistent components be isolated for the sake of
efficient modeling. Notwithstanding the general variability of
EEG data, the technique of dipole analysis appears to be a very
promising way to determine the localization, time course, and
especially sequencing of neural events for the purpose of building
increasingly complex neurocognitive simulations.

There are already links between ACT-R modeling and the
learning sciences and education. For example, modeling based
on fMRI imaging data has already been used to monitor
children’s mathematical learning procedures (e.g., Qin et al.,
2004) and strategies (Tenison et al., 2014). However, the focus
of these types of studies has mainly been to understand the
processes underlying mathematical and arithmetic problem-
solving during structured lab testing. In addition, research on
ACT-R models has been used to build “cognitive tutors,” that
is, computer-tutoring programs that implement the ACT-R
architecture for the teaching of algebra, geometry, and integrated
math (Anderson et al., 1995). The type of neurocognitive models
described in the present study may be a further development
in the possible application for learning and education by using
ACT-R or other architectures for closed-loop brain training or,
in other words, educational neurofeedback for practical uses with
non-clinical populations and, in particular, with young children
with or without special needs. In contrast to fMRI applications,
EEG-based applications are relatively inexpensive, portable and
wireless, and are more child-friendly in that they can tolerate
to a certain extent some mobility and can be used in open
spaces rather than a scanner. As a way of concluding the paper,
possible future applications and research directions are discussed
next with considerations for both progress and limitations of
this research.
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As discussed by Fairclough (2009), neurocognitive modeling
could be integrated in closed-loop brain training to (i) induce the
desired optimal psychological state prior to learning experience
or examination (as suggested by sports neurofeedback,
Hammond, 2007), to (ii) teach children about biological
systems using biofeedback games (self-regulation exercises plus
knowledge of human biology, see Sitaram et al., 2017), and to
(iii) design adaptive educational software which in real time
can keep the learner motivated, to avoid disengagement or
boredom, as suggested by video games research (Lécuyer et al.,
2008; Mishra et al., 2016; Kasemsap, 2017). Compatible with
the traditional closed-loop brain training paradigm, in the first
two instances (applications i and ii) the user works with the
processed biological signal to develop a degree of self-regulation
which can become a stable individual cognitive trait with practice
(Sitaram et al., 2017). As far as it concerns the third instance
(application iii), the software may be developed to be adaptive
so that it may personalize and optimize the learning process for
an individual. In other words, an efficient, optimal mind/brain
state is being created on the fly by dynamic software adaptation
to facilitate learning. It is unclear whether the latter application
is as effective for encouraging self-regulatory strategies as
traditional biofeedback, or whether it can serve as a potent tool
for optimizing the learning process itself. The fact, however, that
the neurocognitive modeling feedback is represented through
content (simplified spikes) and that is congruent with the
underlying brain processes might suggest that it could guide
children to use natural mental strategies such as mental imagery
(Scharnowski et al., 2015), which tend to be more successful in
leading to learning and transfer.

Thus, in principle, it seems reasonable to speculate that
EEG-based neurocognitive modeling of children’s data could
be used for indicating when/how teaching methods need to be
revised, or as an assessment tool technique, monitoring how
long children are engaged, interested or focused, as well as their
actual understanding of materials and performance during the
tests. EEG-based neurocognitive modeling may also help the
teacher in assessing individual differences in specific aptitudes
and preferences, demonstrating which learner has an aptitude for
a subject or activity by the intensity, and patterns of activation
in certain areas. It could therefore be used to assign students or
groups of students to subjects or help them develop matching
preferences to topics or projects.

Given that EEG patterns of young children differ from
adults, a motivation for the current research was to model
specifically children’s data and use an approach that could lead
to valid implementations. Accordingly, one of the implications
is that the practical issues of recognition and classification
of EEG patterns in young children can be minimized with
increasing progress in the use of the approach. Because the
technique demonstrated here can be designed so that models
are not dependent on verbal or motor response, it could be
used with young children—in particular, preschoolers. A future
direction for research would be to adapt to extend the present
approach to even younger children so that age is for any
practical purpose virtually irrelevant. Single-trial ERPs could
be measured routinely during learning, class or homework

activity, and provided that one day the markers will allow early
detection for learning difficulties, and especially reading and
math disabilities. Suitable preventive teaching methods or early
interventions could be put in place before the problems start
having their negative effects. Importantly, it may be possible
to detect or confirm clinical conditions such as ADHD by
examining EEG activity showing, for example, the relative ratio
of beta and theta EEG frequencies generated in certain ROIs in
the brain.

In addition to the potential usefulness for diagnostic purposes,
a better specification of the neural dynamics through EEG-based
neurocognitive modeling may afford to describe the learning
process more accurately, and to adapt teaching accordingly. In
video games research, some applications are already enabling
computer activities to respond to the affective states of the
user classified as being, for example, bored, angry, excited,
or confused. This approach can be directly transferred into
education environments where information, activities, tasks and
exercises can be tailored at an appropriate level and in an
enticing way. Furthermore, the feedback the system uses about
the person’s state could become part of neurofeedback itself, as it
could be used for supporting practice and training of key aspects
of executive functions and attention.

It seems plausible that personalized neurofeedback in
education likely will not be a stand-alone, but one of many
tools for the learners. An interesting approach would be
to integrate EEG-based neurocognitive modeling in systems
that use multiple techniques over time for changing behavior
(see NASA PlayAttention; Palsson and Pope, 2002). This
application could be similar to those used to enter the optimal
mind/brain state or to improve performance by practicing to
generate relevant EEG timing, patterns and intensities at certain
frequencies, or through learning interfaces in which desired states
are elicited indirectly.

The present research though is only an initial step toward
the development of the learning environments hypothesized
above. At this point, EEG-based neurocognitive modeling only
supports a relatively reliable identification of generic states;
personalization will require many layers of improvement and
fine tuning to allow monitoring to identify an individual state
and then training to replicate it consistently and reliably. The
present research opens up many interesting questions for future
research regarding knowledge representation in educational
neurofeedback. Can neurofeedback based on the simplified spike
representation as shown here with EEG-based neurocognitive
modeling be a suitable method of communicating information?
And can it be used as an appropriate way for ensuring that
information is presented meaningfully to young children? It is
unclear at this point if it is more sensible to use such an approach
to engage andmonitor rather than to teach per se. Many questions
hinge on the type of interface for education. Should it relate
directly to a subject such as human biology, as discussed earlier,
or can it be more abstract, and simply inducing the desired
mind/brain state could be sufficient? Can shared cooperative
or competitive environments be created to be more engaging
to achieve the desired state? Also, many other very important
related practical aspects such as aesthetics (the appearance of
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the interface and electrodes), wearability, mobility/portability,
and degree of invasiveness are in need of much more
future research.

All analyses, simulations and modeling included in this paper
involved a novel combination of existing, commercially available
or even open source tools that are widely available and used in the
research and consumer communities. Therefore, a third implicit
goal of this paper was to show that the approach used here, or
a similar approach, could in principle be adopted relatively easily
by non-experts in educational and pedagogical settings. However,
it is important to point out that there are limitations in terms
of reliability, that is, precision of measurement afforded by the
existing tools we used. The particular implementation of ACT-
R used in this study is based on a spherical head assumption,
which makes possible mapping ERP activity onto MRI-based
anatomo-functional structures. However, the extraction of ERP
data under the sphericity assumption employs the common
average across the scalp as the reference channel for the recorded
EEG data. Other reference methods, specifically the reference
electrode standardization technique (REST) (Yao, 2001), have
been shown to give more precise temporal information on EEG
recordings. However, even with the current limitations of the
tools, the approach we used seems reasonably robust in terms
of the validity of neurocognitive modeling, because it focused
on insuring that those tools identified and measured the internal
processes as predicted. Ultimately, the validity was insured by
comparison with a body of ACT-R modeling work, which has
been done in both adults and children. We are not aware of
currently widely available EEG-based ACT-R applications in
children that used REST. Therefore, we suggest that an important
extension of the present work is for future research to devise
ways to assess the validity and reliability of REST in ACT-R

neurocognitive modeling of children’s data, thereby establishing
a base of knowledge and use for the benefit of non-experts.

In conclusion, the retooling of existing computational
techniques in novel ways such as the one demonstrated by our
study opens a host of possible innovations in neurotechnological
applications for personalized and inclusive education. Although
we are still far from actual effective implementation of credible
and dependable neurotech for learning, thinking about their
potential and how we will use them and when they will be ready
is crucial so that education tools can be properly designed from
inception. All stakeholders (teachers, students, academics, and
parents) need to be involved at the onset—that is, from now—
as part of research development to create systems that are useful,
usable and meet the highest ethical and safety standards.
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