282 research outputs found
Who practices sports can be vegetarian?
In recent years, interest in "vegetarianism" has increased considerably, both among the common population and among sportsmen. Athletic performance and post-workout recovery can be improved through optimal nutrition: choosing the right foods and introducing them at the right time can make a difference in terms of sports results, for the same number of sessions and training hours. But those who practice sports can follow a vegetarian diet? The choice to become vegetarian is often based on the mere refusal to consume meat or animal products, a choice attributable to philosophical motivations of different nature. In this manuscript, we will try to determine, by commenting on the scientific data published in recent years, the effects, positive or negative, that could be a consequence from adopting a diet of this type, both in everyday life and in sports
Guarana and physical performance: A myth or reality?
Guarana (Paullinia cupana) is a rainforest vine that was domesticated in the Amazon for its caffeine-rich fruits. Each fruit contains from one to three seeds which, properly dried, give rise to a brown paste with a bitter taste. The Food and Drug Administration generally recognizes guarana as safe, although there are no established dosages and it is unclear how much guarana is in each drink, because many companies do not list a milligram amount. The increasing number of energy drink with caffeine-related clearly shows that there seems to be a real risk for adverse health effects such as arrhythmias. However, under moderate use and without combining other stimulants or alcohol, the risk for such side effects seem negligible. Anyway, there is an overwhelming lack of evidence to substantiate claims that guarana contribute to the enhancement of physical or cognitive performance. Additional well-designed, randomized, placebo-controlled studies are needed in order to assess claims made for this product and further elucidate potential adverse effects
inhibition of osteoclast activity by complement regulation with df3016a a novel small molecular weight c5ar inhibitor
Abstract Recent insights have indicated an active role of the complex complement system not only in immunity, but also in bone remodeling. Evidence from knockout mice and observations from skeletal diseases have drawn attention to the C5a/C5aR axis of the complement cascade in the modulation of osteoclast functions and as potential therapeutic targets for treatment of bone pathologies. With the aim to identify novel C5aR regulators, a medicinal chemistry program was initiated, driven by structural information on a minor pocket of C5aR that has been proposed to be a key motif for C5aR intracellular activation. The impact of the peptidomimetic orthosteric C5aR antagonist (PMX-53), of two newly synthesized allosteric C5aR antagonists (DF2593A, DF3016A), and of C5aR down-regulation by specific siRNAs, were examined for regulation of osteoclastogenesis, using a well-validated in-vitro model starting from RAW264.7 precursor cells. Both pharmacological and molecular approaches reduced osteoclast maturation of RAW264.7 cells induced by receptor-activator of nuclear factor kappa-B ligand (RANKL), which limited the transcription of several differentiation markers evaluated by real-time PCR, including nuclear factor of activated T-cell 1, matrix metalloproteinase-9, cathepsin-K, and tartrate-resistant acid phosphatase. These treatments were ineffective on the subsequent step of osteoclast syncytium formation, apparently as a consequence of reduction of C5aR mRNA levels in the course of osteoclastogenesis, as monitored by real-time PCR. Among the C5aR antagonists analyzed, DF3016A inhibited osteoclast degradation activity through inhibition of C5aR signal transduction and transcription. These data confirm the preclinical relevance of this novel therapeutic candidate
Annurca apple polyphenol extract selectively kills MDA-MB-231 cells through ROS generation, sustained JNK activation and cell growth and survival inhibition
Polyphenols represent the most studied class of nutraceuticals that can be therapeutics for a large spectrum of diseases, including cancer. In this study, we investigated for the first time the antitumor activities of polyphenol extract from Annurca apple (APE) in MDA-MB-231 triple negative breast cancer cells, and we explored the underlying mechanisms. APE selectively inhibited MDA-MB-231 cell viability and caused G2/M phase arrest associated with p27 and phospho-cdc25C upregulation and with p21 downregulation. APE promoted reactive oxygen species (ROS) generation in MDA-MB-231 cells while it acted as antioxidant in non-tumorigenic MCF10A cells. We demonstrated that ROS generation represented the primary step of APE antitumor activity as pretreatment with antioxidant N-acetylcysteine (NAC) prevented APE-induced G2/M phase arrest, apoptosis, and autophagy. APE downregulated Dusp-1 and induced a significant increase in JNK/c-Jun phosphorylation that were both prevented by NAC. Moreover, downregulation of JNK by its specific inhibitor SP600125 significantly diminished the anticancer activity of APE indicating that ROS generation and sustained JNK activation represented the main underlying mechanism of APE-induced cell death. APE also inhibited AKT activation and downregulated several oncoproteins, such as NF-kB, c-myc, and beta-catenin. In light of these results, APE may be an attractive candidate for drug development against triple negative breast cancer
TRK fusion positive cancers:From first clinical data of a TRK inhibitor to future directions
Genetic alterations of neurotrophic tropomyosin or tyrosine receptor kinase (NTRK) 1/2/3 genes generate TRK fusion proteins have been reported in a variety of adult and child cancers from diverse cell/tissue lineages. Larotrectinib, a tumour-agnostic TRK inhibitor, has shown remarkable efficacy in a novel "basket" study which has enrolled patients from infants to elderly with different TRK fusion-positive cancers. In this review, we focus on the challenges and expectations on the development of "tumour-agnostic" targeted therapies in rare malignancies.</p
TRK fusion positive cancers:From first clinical data of a TRK inhibitor to future directions
Genetic alterations of neurotrophic tropomyosin or tyrosine receptor kinase (NTRK) 1/2/3 genes generate TRK fusion proteins have been reported in a variety of adult and child cancers from diverse cell/tissue lineages. Larotrectinib, a tumour-agnostic TRK inhibitor, has shown remarkable efficacy in a novel "basket" study which has enrolled patients from infants to elderly with different TRK fusion-positive cancers. In this review, we focus on the challenges and expectations on the development of "tumour-agnostic" targeted therapies in rare malignancies.</p
Spontaneous galvanic displacement of Pt nanostructures on nickel foam: Synthesis, characterization and use for hydrogen evolution reaction
Abstract In this paper we propose the use of spontaneous galvanic displacement as a promising solution to produce nickel foam electrodes functionalized with interconnected platinum nanoparticles. Scanning Electron Microscopy analyses, coupled with X-ray Energy Dispersive Spectroscopy show that, under proper conditions, we can overcome the limits of other deposition techniques, achieving a uniform Pt coverage throughout the 3D structure of the Ni foam. We show that such a condition, not deeply investigated in previous literature, turns out to be crucial for the long term stability of the electrodes under constant current stress. The amount of Pt on the Ni foam has been experimentally evaluated, obtaining optimal results with 0.015 mg cm−2 of noble metal in a 0.16 cm thick electrode. Such a low amount corresponds to a Ni foam cost increase of less than 0.1%
- …