2,244 research outputs found

    X-ray and UV correlation in the quiescent emission of Cen X-4, evidence of accretion and reprocessing

    Get PDF
    We conducted the first long-term (60 days), multiwavelength (optical, ultraviolet, and X-ray) simultaneous monitoring of Cen X-4 with daily Swift observations, with the goal of understanding variability in the low mass X-ray binary Cen X-4 during quiescence. We found Cen X-4 to be highly variable in all energy bands on timescales from days to months, with the strongest quiescent variability a factor of 22 drop in the X-ray count rate in only 4 days. The X-ray, UV and optical (V band) emission are correlated on timescales down to less than 110 s. The shape of the correlation is a power law with index gamma about 0.2-0.6. The X-ray spectrum is well fitted by a hydrogen NS atmosphere (kT=59-80 eV) and a power law (with spectral index Gamma=1.4-2.0), with the spectral shape remaining constant as the flux varies. Both components vary in tandem, with each responsible for about 50% of the total X-ray flux, implying that they are physically linked. We conclude that the X-rays are likely generated by matter accreting down to the NS surface. Moreover, based on the short timescale of the correlation, we also unambiguously demonstrate that the UV emission can not be due to either thermal emission from the stream impact point, or a standard optically thick, geometrically thin disc. The spectral energy distribution shows a small UV emitting region, too hot to arise from the accretion disk, that we identified as a hot spot on the companion star. Therefore, the UV emission is most likely produced by reprocessing from the companion star, indeed the vertical size of the disc is small and can only reprocess a marginal fraction of the X-ray emission. We also found the accretion disc in quiescence to likely be UV faint, with a minimal contribution to the whole UV flux.Comment: 5 pages, 4 figures, submitted to Proc. Int. Conf. Physics at the Magnetospheric Boundary, Geneva, Switzerland (25-28 June, 2013

    Daily, multiwavelength Swift monitoring of the neutron star low-mass X-ray binary Cen X-4: evidence for accretion and reprocessing during quiescence

    Get PDF
    We conducted the first long-term (60 days), multiwavelength (optical, ultraviolet, and X-ray) simultaneous monitoring of Cen X-4 with daily Swift observations from June to August 2012, with the goal of understanding variability in the low mass X-ray binary Cen X-4 during quiescence. We found Cen X-4 to be highly variable in all energy bands on timescales from days to months, with the strongest quiescent variability a factor of 22 drop in the X-ray count rate in only 4 days. The X-ray, UV and optical (V band) emission are correlated on timescales down to less than 110 s. The shape of the correlation is a power law with index gamma about 0.2-0.6. The X-ray spectrum is well fitted by a hydrogen NS atmosphere (kT=59-80 eV) and a power law (with spectral index Gamma=1.4-2.0), with the spectral shape remaining constant as the flux varies. Both components vary in tandem, with each responsible for about 50% of the total X-ray flux, implying that they are physically linked. We conclude that the X-rays are likely generated by matter accreting down to the NS surface. Moreover, based on the short timescale of the correlation, we also unambiguously demonstrate that the UV emission can not be due to either thermal emission from the stream impact point, or a standard optically thick, geometrically thin disc. The spectral energy distribution shows a small UV emitting region, too hot to arise from the accretion disk, that we identified as a hot spot on the companion star. Therefore, the UV emission is most likely produced by reprocessing from the companion star, indeed the vertical size of the disc is small and can only reprocess a marginal fraction of the X-ray emission. We also found the accretion disc in quiescence to likely be UV faint, with a minimal contribution to the whole UV flux.Comment: 19 pages, 6 figures, 4 table

    Dark Matter investigation by DAMA at Gran Sasso

    Full text link
    Experimental observations and theoretical arguments at Galaxy and larger scales have suggested that a large fraction of the Universe is composed by Dark Matter particles. This has motivated the DAMA experimental efforts to investigate the presence of such particles in the galactic halo by exploiting a model independent signature and very highly radiopure set-ups deep underground. Few introductory arguments are summarized before presenting a review of the present model independent positive results obtained by the DAMA/NaI and DAMA/LIBRA set-ups at the Gran Sasso National Laboratory of the INFN. Implications and model dependent comparisons with other different kinds of results will be shortly addressed. Some arguments put forward in literature will be confuted.Comment: review article, 71 pages, 25 figures, 8 tables; v2: minor modifications. In publication on the International Journal of Modern Physics

    No role for neutrons, muons and solar neutrinos in the DAMA annual modulation results

    Get PDF
    This paper summarizes in a simple and intuitive way why the neutrons, the muons and the solar neutrinos cannot give any significant contribution to the DAMA annual modulation results. A number of these elements have already been presented in individual papers; they are recalled here. Afterwards, few simple considerations are summarized which already demonstrate the incorrectness of the claim reported in PRL 113 (2014) 081302.Comment: 11 pages, 1 tabl

    Investigating Earth shadowing effect with DAMA/LIBRA-phase1

    Get PDF
    In the present paper the results obtained in the investigation of possible diurnal effects for low-energy single-hit scintillation events of DAMA/LIBRA-phase1 (1.04 ton ×\times yr exposure) have been analysed in terms of an effect expected in case of Dark Matter (DM) candidates inducing nuclear recoils and having high cross-section with ordinary matter, which implies low DM local density in order to fulfill the DAMA/LIBRA DM annual modulation results. This effect is due to the different Earth depths crossed by those DM candidates during the sidereal day.Comment: 22 pages, 9 figures, 1 table; in publication on Eur. Phys. J.

    Model independent result on possible diurnal effect in DAMA/LIBRA-phase1

    Get PDF
    The results obtained in the search for possible diurnal effect in the single-hit low energy data collected by DAMA/LIBRA-phase1 (total exposure: 1.04 ton x yr) deep underground at the Gran Sasso National Laboratory (LNGS) of the I.N.F.N. are presented. At the present level of sensitivity the presence of any significant diurnal variation and of diurnal time structures in the data can be excluded for both the cases of solar and sidereal time. In particular, the diurnal modulation amplitude expected, because of the Earth diurnal motion, on the basis of the DAMA Dark Matter annual modulation results is below the present sensitivity.Comment: 14 pages, 5 figures, 2 tables; in publication on Eur. Phys. J.

    Final model independent result of DAMA/LIBRA-phase1

    Get PDF
    The results obtained with the total exposure of 1.04 ton x yr collected by DAMA/LIBRA-phase1 deep underground at the Gran Sasso National Laboratory (LNGS) of the I.N.F.N. during 7 annual cycles (i.e. adding a further 0.17 ton x yr exposure) are presented. The DAMA/LIBRA-phase1 data give evidence for the presence of Dark Matter (DM) particles in the galactic halo, on the basis of the exploited model independent DM annual modulation signature by using highly radio-pure NaI(Tl) target, at 7.5 sigma C.L.. Including also the first generation DAMA/NaI experiment (cumulative exposure 1.33 ton x yr, corresponding to 14 annual cycles), the C.L. is 9.3 sigma and the modulation amplitude of the single-hit events in the (2-6) keV energy interval is: (0.0112 \pm 0.0012) cpd/kg/keV; the measured phase is (144 \pm 7) days and the measured period is (0.998 \pm 0.002) yr, values well in agreement with those expected for DM particles. No systematic or side reaction able to mimic the exploited DM signature has been found or suggested by anyone over more than a decade.Comment: 20 pages, 13 figures, 6 tables; in publication on Eur. Phys. J.

    The DAMA/LIBRA apparatus

    Get PDF
    The ≃\simeq 250 kg highly radiopure NaI(Tl) DAMA/LIBRA apparatus, running at the Gran Sasso National Laboratory (LNGS) of the I.N.F.N., is described.Comment: 37 pages, 27 figure

    Particle Dark Matter and DAMA/LIBRA

    Full text link
    The DAMA/LIBRA set-up (about 250 kg highly radiopure NaI(Tl) sensitive mass) is running at the Gran Sasso National Laboratory of the I.N.F.N.. The first DAMA/LIBRA results confirm the evidence for the presence of a Dark Matter particle component in the galactic halo, as pointed out by the former DAMA/NaI set-up; cumulatively the data support such evidence at 8.2 sigma C.L. and satisfy all the many peculiarities of the Dark Matter annual modulation signature. The main aspects and prospects of this model independent experimental approach will be outlined.Comment: Contributed paper to the Int. Conf. SciNeGHE 2009, Assisi, Italy, October 200
    • …
    corecore