We conducted the first long-term (60 days), multiwavelength (optical,
ultraviolet, and X-ray) simultaneous monitoring of Cen X-4 with daily Swift
observations from June to August 2012, with the goal of understanding
variability in the low mass X-ray binary Cen X-4 during quiescence. We found
Cen X-4 to be highly variable in all energy bands on timescales from days to
months, with the strongest quiescent variability a factor of 22 drop in the
X-ray count rate in only 4 days. The X-ray, UV and optical (V band) emission
are correlated on timescales down to less than 110 s. The shape of the
correlation is a power law with index gamma about 0.2-0.6. The X-ray spectrum
is well fitted by a hydrogen NS atmosphere (kT=59-80 eV) and a power law (with
spectral index Gamma=1.4-2.0), with the spectral shape remaining constant as
the flux varies. Both components vary in tandem, with each responsible for
about 50% of the total X-ray flux, implying that they are physically linked. We
conclude that the X-rays are likely generated by matter accreting down to the
NS surface. Moreover, based on the short timescale of the correlation, we also
unambiguously demonstrate that the UV emission can not be due to either thermal
emission from the stream impact point, or a standard optically thick,
geometrically thin disc. The spectral energy distribution shows a small UV
emitting region, too hot to arise from the accretion disk, that we identified
as a hot spot on the companion star. Therefore, the UV emission is most likely
produced by reprocessing from the companion star, indeed the vertical size of
the disc is small and can only reprocess a marginal fraction of the X-ray
emission. We also found the accretion disc in quiescence to likely be UV faint,
with a minimal contribution to the whole UV flux.Comment: 19 pages, 6 figures, 4 table