25 research outputs found

    Lysine 238 Is an Essential Residue for α,β-Elimination Catalyzed by Treponema denticola Cystalysin

    Get PDF
    Treponema denticola cystalysin is a pyridoxal 5'-phosphate (PLP) enzyme that catalyzes the alpha,beta-elimination of l-cysteine to pyruvate, ammonia, and H2S. Similar to other PLP enzymes, an active site Lys residue (Lys-238) forms an internal Schiff base with PLP. The mechanistic role of this residue has been studied by an analysis of the mutant enzymes in which Lys-238 has been replaced by Ala (K238A) and Arg (K238R). Both apomutants reconstituted with PLP bind noncovalently approximately 50% of the normal complement of the cofactor and have a lower affinity for the coenzyme than that of wild-type. Kinetic analyses of the reactions of K238A and K238R mutants with glycine compared with that of wild-type demonstrate the decrease of the rate of Schiff base formation by 103- and 7.5 x 104-fold, respectively, and, to a lesser extent, a decrease of the rate of Schiff base hydrolysis. Thus, a role of Lys-238 is to facilitate formation of external aldimine by transimination. Kinetic data reveal that the K238A mutant is inactive in the alpha,beta-elimination of l-cysteine and beta-chloro-l-alanine, whereas K238R retains 0.3% of the wild-type activity. These data, together with those derived from a spectral analysis of the reaction of Lys-238 mutants with unproductive substrate analogues, indicate that Lys-238 is an essential catalytic residue, possibly participating as a general base abstracting the Calpha-proton from the substrate and possibly as a general acid protonating the beta-leaving group

    Hypoxia-dependent drivers of melanoma progression

    Get PDF
    Hypoxia, a condition of low oxygen availability, is a hallmark of tumour microenvironment and promotes cancer progression and resistance to therapy. Many studies reported the essential role of hypoxia in regulating invasiveness, angiogenesis, vasculogenic mimicry and response to therapy in melanoma. Melanoma is an aggressive cancer originating from melanocytes located in the skin (cutaneous melanoma), in the uveal tract of the eye (uveal melanoma) or in mucosal membranes (mucosal melanoma). These three subtypes of melanoma represent distinct neoplasms in terms of biology, epidemiology, aetiology, molecular profile and clinical features.In this review, the latest progress in hypoxia-regulated pathways involved in the development and progression of all melanoma subtypes were discussed. We also summarized current knowledge on preclinical studies with drugs targeting Hypoxia-Inducible Factor-1, angiogenesis or vasculogenic mimicry. Finally, we described available evidence on clinical studies investigating the use of Hypoxia-Inducible Factor-1 inhibitors or antiangiogenic drugs, alone or in combination with other strategies, in metastatic and adjuvant settings of cutaneous, uveal and mucosal melanoma.Hypoxia-Inducible Factor-independent pathways have been also reported to regulate melanoma progression, but this issue is beyond the scope of this review.As evident from the numerous studies discussed in this review, the increasing knowledge of hypoxia-regulated pathways in melanoma progression and the promising results obtained from novel antiangiogenic therapies, could offer new perspectives in clinical practice in order to improve survival outcomes of melanoma patients

    Stereochemistry of the Reactions of Glutamate-1-semialdehyde Aminomutase with 4,5-Diaminovalerate

    Get PDF
    Conversion of glutamate 1-semialdehyde to the tetrapyrrole precursor, 5-aminolevulinate, takes place in an aminomutase-catalyzed reaction involving transformations at both the non-chiral C5 and the chiral C4 of the intermediate 4,5-diaminovalerate. Presented with racemic diaminovalerate and an excess of succinic semialdehyde, the enzyme catalyzes a transamination in which only the l-enantiomer is consumed. Simultaneously, equimolar 4-aminobutyrate and aminolevulinate are formed. The enzyme is also shown to transaminate aminolevulinate and 4-aminohexenoate to l-diaminovalerate as the exclusive amino product. The interaction of the enzyme with pure d- and l-enantiomers of diaminovalerate prepared by these reactions is described. Transamination of l-diaminovalerate yielded aminolevulinate quantitatively showing that reaction at the C5 amine does not occur significantly. A much slower transamination reaction was catalyzed with d-diaminovalerate as substrate. One product of this reaction, 4-aminobutyrate, was formed in the amount equal to that of the diaminovalerate consumed. Glutamate semialdehyde was deduced to be the other primary product and was also measured in significant amounts when a high concentration of the enzyme in its pyridoxal form was reacted with d-diaminovalerate in a single turnover. Single turnover reactions showed that both enantiomers of diaminovalerate converted the enzyme from its 420-nm absorbing pyridoxaldimine form to the 330-nm absorbing pyridoxamine via rapidly formed intermediates with different absorption spectra. The intermediate formed with l-DAVA (lambdamax = 420 nm) was deduced to be the protonated external aldimine with the 4-amino group. The intermediate formed with d-DAVA (lambdamax = 390 nm) was deduced to be the unprotonated external aldimine with the 5-amino group

    BCL-XL overexpression promotes tumor progression-associated properties article

    Get PDF
    By using human melanoma and glioblastoma cell lines and their derivative BCL-XL overexpressing clones, we investigated the role of BCL-XL in aggressive features of these two tumor histotypes. We found that in both models, BCL-XL overexpression increased in vitro cell migration and invasion and facilitated tumor cells to form de novo vasculogenic structures. Furthermore, BCL-XL overexpressing cells exhibited higher tumors sphere formation capacity and expressed higher levels of some stem cell markers, supporting the concept that BCL-XL plays essential roles in the maintenance of cancer stem cell phenotype. BCL-XL expression reduction by siRNA, the exposure to a BCL-XL-specific inhibitor and the use of a panel of human melanoma cell lines corroborated the evidence that BCL-XL regulates tumor progression-associated properties. Finally, the vascular markers and the vasculogenic mimicry were up-regulated in the BCL-XL overexpressing xenografts derived from both tumor histotypes. In conclusion, our work brings further support to the understanding of the malignant actions of BCL-XL and, in particular, to the concept that BCL-XL promotes stemness and contributes to the aggressiveness of both melanoma and glioblastoma

    Melanoma-specific bcl-2 promotes a protumoral M2-like phenotype by tumor-associated macrophages

    Get PDF
    BackgroundA bidirectional crosstalk between tumor cells and the surrounding microenvironment contributes to tumor progression and response to therapy. Our previous studies have demonstrated that bcl-2 affects melanoma progression and regulates the tumor microenvironment. The aim of this study was to evaluate whether bcl-2 expression in melanoma cells could influence tumor-promoting functions of tumor-associated macrophages, a major constituent of the tumor microenvironment that affects anticancer immunity favoring tumor progression.MethodsTHP-1 monocytic cells, monocyte-derived macrophages and melanoma cells expressing different levels of bcl-2 protein were used. ELISA, qRT-PCR and Western blot analyses were used to evaluate macrophage polarization markers and protein expression levels. Chromatin immunoprecipitation assay was performed to evaluate transcription factor recruitment at specific promoters. Boyden chamber was used for migration experiments. Cytofluorimetric and immunohistochemical analyses were carried out to evaluate infiltrating macrophages and T cells in melanoma specimens from patients or mice.ResultsHigher production of tumor-promoting and chemotactic factors, and M2-polarized activation was observed when macrophages were exposed to culture media from melanoma cells overexpressing bcl-2, while bcl-2 silencing in melanoma cells inhibited the M2 macrophage polarization. In agreement, the number of melanoma-infiltrating macrophages in vivo was increased, in parallel with a greater expression of bcl-2 in tumor cells. Tumor-derived interleukin-1β has been identified as the effector cytokine of bcl-2-dependent macrophage reprogramming, according to reduced tumor growth, decreased number of M2-polarized tumor-associated macrophages and increased number of infiltrating CD4+IFNγ+and CD8+IFNγ+effector T lymphocytes, which we observed in response to in vivo treatment with the IL-1 receptor antagonist kineret. Finally, in tumor specimens from patients with melanoma, high bcl-2 expression correlated with increased infiltration of M2-polarized CD163+macrophages, hence supporting the clinical relevance of the crosstalk between tumor cells and microenvironment.ConclusionsTaken together, our results show that melanoma-specific bcl-2 controls an IL-1β-driven axis of macrophage diversion that establishes tumor microenvironmental conditions favoring melanoma development. Interfering with this pathway might provide novel therapeutic strategies

    Threonine aldolase and alanine racemase: novel examples of convergent evolution in the superfamily of vitamin B6-dependent enzymes

    No full text
    Vitamin B(6)-dependent enzymes may be grouped into five evolutionarily unrelated families, each having a different fold. Within fold type I enzymes, L-threonine aldolase (L-TA) and fungal alanine racemase (AlaRac) belong to a subgroup of structurally and mechanistically closely related proteins, which specialised during evolution to perform different functions. In a previous study, a comparison of the catalytic properties and active site structures of these enzymes suggested that they have a catalytic apparatus with the same basic features. Recently, recombinant D-threonine aldolases (D-TAs) from two bacterial organisms have been characterised, their predicted amino acid sequences showing no significant similarities to any of the known B(6) enzymes. In the present work, a comparative structural analysis suggests that D-TA has an alpha/beta barrel fold and therefore is a fold type III B(6) enzyme, as eukaryotic ornithine decarboxylase (ODC) and bacterial AlaRac. The presence of both TA and AlaRac in two distinct evolutionary unrelated families represents a novel and interesting example of convergent evolution. The independent emergence of the same catalytic properties in families characterised by completely different folds may have not been determined by chance, but by the similar structural features required to catalyse pyridoxal phosphate-dependent aldolase and racemase reactions

    Stereochemistry of the reactions of glutamate-1-semialdehyde aminomutase with 4,5-diaminovalerate

    No full text
    Conversion of glutamate 1-semialdehyde to the tetrapyrrole precursor, 5-aminolevulinate, takes place in an aminomutase-catalyzed reaction involving transformations at both the non-chiral C5 and the chiral C4 of the intermediate 4,5-diaminovalerate. Presented with racemic diaminovalerate and an excess of succinic semialdehyde, the enzyme catalyzes a transamination in which only the L-enantiomer is consumed. Simultaneously, equimolar 4-aminobutyrate and aminolevulinate are formed. The enzyme is also shown to transaminate aminolevulinate and 4-aminohexenoate to L-diaminovalerate as the exclusive amino product. The interaction of the enzyme with pure D- and L-enantiomers of diaminovalerate prepared by these reactions is described. Transamination of L-diaminovalerate yielded aminolevulinate quantitatively showing that reaction at the C5 amine does not occur significantly. A much slower transamination reaction was catalyzed with D-diaminovalerate as substrate. One product of this reaction, 4-aminobutyrate, was formed in the amount equal to that of the diaminovalerate consumed. Glutamate semialdehyde was deduced to be the other primary product and was also measured in significant amounts when a high concentration of the enzyme in its pyridoxal form was reacted with D-diaminovalerate in a single turnover. Single turnover reactions showed that both enantiomers of diaminovalerate converted the enzyme from its 420-nm absorbing pyridoxaldimine form to the 330-nm absorbing pyridoxamine via rapidly formed intermediates with different absorption spectra. The intermediate formed with L-DAVA (max 420 nm) was deduced to be the protonated external aldimine with the 4-amino group. The intermediate formed with D-DAVA (max 390 nm) was deduced to be the unprotonated external aldimine with the 5-amino group

    L-Threonine aldolase, serine hydroxymethyltransferase and fungal alanine racemase. A subsgroup of strictly related enzymes specialized for different functions

    No full text
    Serine hydroxymethyltransferase (SHMT) is a member of the fold type I family of vitamin B6-dependent enzymes, a group of evolutionarily related proteins that share the same overall fold. The reaction catalysed by SHMT, the transfer of Cbeta of serine to tetrahydropteroylglutamate (H4PteGlu), represents in the cell an important link between the breakdown of amino acids and the metabolism of folates. In the absence of H4PteGlu and when presented with appropriate substrate analogues, SHMT shows a broad range of reaction specificity, being able to catalyse at appreciable rates retroaldol cleavage, racemase, aminotransferase and decarboxylase reactions. This apparent lack of specificity is probably a consequence of the particular catalytic apparatus evolved by SHMT. An interesting question is whether other fold type I members that normally catalyse the reactions which for SHMT could be considered as 'forced errors', may be close relatives of this enzyme and have a catalytic apparatus with the same basic features. As shown in this study, l-threonine aldolase from Escherichia coli is able to catalyse the same range of reactions catalysed by SHMT, with the exception of the serine hydroxymethyltransferase reaction. This observation strongly suggests that SHMT and l-threonine aldolase are closely related enzymes specialized for different functions. An evolutionary analysis of the fold type I enzymes revealed that SHMT and l-threonine aldolase may actually belong to a subgroup of closely related proteins; fungal alanine racemase, an extremely close relative of l-threonine aldolase, also appears to be a member of the same subgroup. The construction of three-dimensional homology models of l-threonine aldolase from E. coli and alanine racemase from Cochliobolus carbonum, and their comparison with the SHMT crystal structure, indicated how the tetrahydrofolate binding site might have evolved and offered a starting point for further investigations

    Alanine racemase from Tolypocladium inflatum: A key PLP-dependent enzyme in cyclosporin biosynthesis and a model of catalytic promiscuity

    No full text
    Cyclosporin A, a cyclic peptide produced by the fungus Tolypocladium inflatum, is a widely employed immunosuppressant drug. Its biosynthesis is strictly dependent on the action of the pyridoxal 5'-phosphate-dependent enzyme alanine racemase, which produces the D-alanine incorporated in the cyclic peptide. This enzyme has a different fold with respect to bacterial alanine racemases. The interest elicited by T. inflatum alanine racemase not only relies on its biotechnological relevance, but also on its evolutionary and structural similarity to the promiscuous enzymes serine hydroxymethyltransferase and threonine aldolase. The three enzymes represent a model of divergent evolution from an ancestral enzyme that was able to catalyse all the reactions of the modern enzymes. A protocol to express and purify with high yield recombinant T. inflatum alanine racemase was developed. The catalytic properties of the enzyme were characterized. Similarly to serine hydroxymethyltransferase and threonine aldolase, T. inflatum alanine racemase was able to catalyse retroaldol cleavage and transamination reactions. This observation corroborates the hypothesis of the common evolutionary origin of these enzymes. A three-dimensional model of T. inflatum alanine racemase was constructed on the basis of threonine aldolase crystal structure. The model helped rationalise the experimental data and explain the catalytic properties of the enzymes. (C) 2012 Elsevier Inc. All rights reserved
    corecore