2,872 research outputs found
Knock Detection in SI Engines by Using the Discrete Wavelet Transform of the Engine Block Vibrational Signals
Abstract In the present work, the Discrete Wavelet Transform (DWT) has been applied on the vibrational signals acquired by an accelerometer placed on the cylinder block of a Spark Ignition (SI) engine, for detecting knock phenomena. In order to collect both vibrational data and in-cylinder pressures, useful for the analysis, a series of experiments on a four cylinder, four stroke Internal Combustion (IC) engine has been carried out. The obtained results show how the presented knock detection algorithm is able to monitor the goodness of the combustion phase in absence of knock phenomena, and otherwise to determine its intensity. This algorithm uses a Multi-Resolution Analysis (MRA) performed on the vibrational signals of the engine block as acquired. The same kind of analysis has been executed by using the traditional index MAPO, which is widely applied on the pressure data, and the results of the two methods have been compared. The comparison, showing how the results are very similar, confirm that the use of the DWT represents a very valid alternative to the traditional knock detection techniques
Self-attraction effect and correction on three absolute gravimeters
The perturbations of the gravitational field due to the mass distribution of
an absolute gravimeter have been studied. The so called Self Attraction Effect
(SAE) is crucial for the measurement accuracy, especially for the International
Comparisons, and for the uncertainty budget evaluation. Three instruments have
been analysed: MPG-2, FG5-238 and IMPG-02. The SAE has been calculated using a
numerical method based on FEM simulation. The observed effect has been treated
as an additional vertical gravity gradient. The correction (SAC) to be applied
to the computed g value has been associated with the specific height level,
where the measurement result is typically reported. The magnitude of the
obtained corrections is of order 1E-8 m/s2.Comment: 14 pages, 8 figures, submitted to Metrologi
An overview of the EXTraS project: Exploring the X-ray Transient and Variable Sky
The EXTraS project (Exploring the X-ray Transient and variable Sky) will
harvest the hitherto unexplored temporal domain information buried in the
serendipitous data collected by the European Photon Imaging Camera (EPIC)
instrument onboard the ESA XMM-Newton X-ray observatory since its launch. This
will include a search for fast transients, as well as a search and
characterization of variability (both periodic and aperiodic) in hundreds of
thousands of sources spanning more than nine orders of magnitude in time scale
and six orders of magnitude in flux. X-ray results will be complemented by
multiwavelength characterization of new discoveries. Phenomenological
classification of variable sources will also be performed. All our results will
be made available to the community. A didactic program in selected High Schools
in Italy, Germany and the UK will also be implemented. The EXTraS project
(2014-2016), funded within the EU/FP7 framework, is carried out by a
collaboration including INAF (Italy), IUSS (Italy), CNR/IMATI (Italy),
University of Leicester (UK), MPE (Germany) and ECAP (Germany).Comment: 6 pages, 1 figure. Proceedings of "Swift: 10 years of Discovery", to
appear in Po
Perturbations of the local gravity field due to mass distribution on precise measuring instruments: a numerical method applied to a cold atom gravimeter
We present a numerical method, based on a FEM simulation, for the
determination of the gravitational field generated by massive objects, whatever
geometry and space mass density they have. The method was applied for the
determination of the self gravity effect of an absolute cold atom gravimeter
which aims at a relative uncertainty of 10-9. The deduced bias, calculated with
a perturbative treatment, is finally presented. The perturbation reaches (1.3
\pm 0.1) \times 10-9 of the Earth's gravitational field.Comment: 12 pages, 7 figure
Discovery of periodic dips in the brightest hard X-ray source of M31 with EXTraS
We performed a search for eclipsing and dipping sources in the archive of the
EXTraS project - a systematic characterization of the temporal behaviour of
XMM-Newton point sources. We discovered dips in the X-ray light curve of 3XMM
J004232.1+411314, which has been recently associated with the hard X-ray source
dominating the emission of M31. A systematic analysis of XMM-Newton
observations revealed 13 dips in 40 observations (total exposure time 0.8
Ms). Among them, four observations show two dips, separated by 4.01 hr.
Dip depths and durations are variable. The dips occur only during
low-luminosity states (L erg s), while the
source reaches L erg s. We propose this
system to be a new dipping Low-Mass X-ray Binary in M31 seen at high
inclination (60-80), the observed dipping periodicity is
the orbital period of the system. A blue HST source within the Chandra error
circle is the most likely optical counterpart of the accretion disk. The high
luminosity of the system makes it the most luminous dipper known to date.Comment: 11 pages, 2 figures, 5 tables, accepted for publication in ApJ
A Linear-size Cascade Decomposition for Wheeler Automata
The Krohn-Rhodes Decomposition Theorem (KRDT) is a central result in automata and semigroup theories: it states that any (deterministic) finite-state automaton can be disassembled into a collection of automata of two simple types, that can be arranged into a combination - cascade - that simulates the original automaton. The elementary building blocks of the decomposition are either resets or permutations. The full-fledged theorem features two orthogonal dimensions of complexity: the type and the number of building blocks appearing in the cascade, and a deep step in the proof is the characterization of the permutations appearing in the decomposition. This characterization implies, in the case of counter-free automata, that the resulting cascade contains no permutations. In this paper we start analysing KRDT for two compression-oriented classes of automata: (i) path- coherent: state-ordered automata mapping state-intervals to state-intervals; (ii) Wheeler: a subclass of path-coherent automata whose order is the one induced by the co-lexicographic order of words. These classes were recently defined and studied and they turn out to be efficiently encodable and indexable. We prove that each automata in these classes can be decomposed as a cascade with a number of components which is linear in the number of states of the original automaton and, for the Wheeler class, we prove that only two-state resets are needed. Our line of reasoning avoids the necessity of using full KRDT and proves our results directly by a simple inductive argument
An Innovative and Easy Method for Iron-Doped Titania Synthesis
In this work, photocatalytically active titanium oxide nanoparticles were synthesized for the treatment of contaminated water under visible light. Various Ag, Sr and Fe-based synthesis and doping techniques (mainly hydrothermal and sol-gel methods) were performed. Adsorptive and photocatalytic properties were studied by testing in batch mode for the decontaminating a synthetic methylene blue solution (used as a model contaminant) using a simple 13 W LED bulb as the light source. The best material in terms of both activity (high removal kinetics) and simplicity of synthesis was found to be titanium oxide doped with Fe via "solid-state"method. This method enabled the synthesis of titania nanoparticles about 70 nanometers in size with Fe3+ effectively substituting titanium atoms (Ti4+) in the crystalline bulk of titania. The pseudo-first-order kinetic model was found to represent the behavior of the experimental data
- …