138 research outputs found

    Visible quantum plasmonics from metallic nanodimers

    Full text link
    We report theoretical evidence that bulk nonlinear materials weakly interacting with highly localized plasmonic modes in ultra-sub-wavelength metallic nanostructures can lead to nonlinear effects at the single plasmon level in the visible range. In particular, the two-plasmon interaction energy in such systems is numerically estimated to be comparable with the typical plasmon linewidths. Localized surface plasmons are thus predicted to exhibit a purely nonclassical behavior, which can be clearly identified by a sub-Poissonian second-order correlation in the signal scattered from the quantized plasmonic field under coherent electromagnetic excitation. We explicitly show that systems sensitive to single-plasmon scattering can be experimentally realized by combining electromagnetic confinement in the interstitial region of gold nanodimers with local infiltration or deposition of ordinary nonlinear materials. We also propose configurations that could allow to realistically detect such an effect with state-of-the-art technology, overcoming the limitations imposed by the short plasmonic lifetime

    Measures for Ph.D. Evaluation: the Recruitment Process

    Get PDF
    Recently the quality of Higher Education (HE) system and its evaluation have been key issues of the political and scientific debate on education policies all over Europe. In the wide landscape that involves the entire HE system we draw attention on the third level of its organization, i.e. the Ph.D. In particular, this paper discusses the necessity of monitoring the recruitment process of Ph.D. system because it represents a fundamental aspect of the Ph.D. system as a whole. We introduce a set of concepts related to the recruitment process and then we make them computable with synthetic indicators. The study provides an empirical analysis based on doctoral schools of four academic years at the University of Siena. Proposed indicators are finally used for detecting weakness and strength of each Ph.D. school.Ph.D. schools, Ph.D.s. recruitment, diversity, external attractiveness, polarization

    Quantum Field Theory and its Anomalies for Topological Matter

    Full text link
    Topology enters in quantum field theory (qft) in multiple forms: one of the most important, in non-abelian gauge theories, being in the identification of the θ\theta vacuum in QCD. A very relevant aspect of this connection is through the phenomenon of chiral and conformal qft anomalies. It has been realized that a class of materials, comprising topological insulators and Weyl semimetals, also exhibit the phenomenon of anomalies, which are responsible for several exotic phenomena, such as the presence of edge currents, resilient under perturbations and scattering by impurities. Another example comes from the response functions of these materials under thermal and mechanical stresses, that may be performed using correlation functions of stress energy tensors in General Relativity. In this case the conformal anomaly plays an important role. We briefly illustrate some salient features of this correspondence, and the effective action describing the long-range interactions that may account for such topological effects.Comment: 6 pages, contributed to QCD at work Lecce, 27-30 June 202

    Atomistic investigation of hybrid plasmonic systems

    Get PDF
    By using time-dependent density functional theory, we investigate in a fully quantum mechanical framework the interactions, in an ultra-near-field regime, between a localized surface plasmon excitable in a silver tetrahedral cluster and a molecular exciton with excitation energy in the same range. We show that, for metal–molecule distances below 5 Å, the optical response of the system results characterized by the appearance of a double peak structure. We analyze the transition densities for the resonant energies and propose a plasmon–exciton electromagnetic interaction model to explain the emerging of a lower energy resonance in the spectra of such kind of hybrid systems of interest for molecular plasmonics

    Water vapor concentration measurements in high purity gases by means of comb assisted cavity ring down spectroscopy

    Get PDF
    In manufacturing processes of semiconductor industry accurate detection and monitoring of water vapor concentration in trace amount is of great importance. The ability to perform reliable measurements in ultrapure gases, with a wide dynamic range and low uncertainty, can have a substantial impact on product quality and process performances. Here, we report on the development of a second-generation comb-assisted cavity ring-down spectrometer and present H2O mole fraction measurements in high-purity N2 gas. Based on the use of a pair of phase-locked lasers and referenced to an optical frequency comb synthesizer, the spectrometer allowed to record high-quality absorption spectra in coincidence with the 32,2 → 22,1 H2O transition at 1.3946 μm. Retrieval of water mole fractions, at levels as low as 380 part per billion, was accomplished through a careful spectra analysis procedure based on the use of refined line shape models which include speed-dependent effects. Measurements were performed with a statistical reproducibility of 5 parts per billion, for an integration time of about 0.2 s. The noise equivalent and minimum detectable absorption coefficients were found to be 3.1 × 10−11 cm−1/ √ and 6.5 × 10−12 cm−1 , respectively. This latter allowed for a minimum detectable water mole fraction (limit of detection) of 160 parts per trillion. Finally, the main sources of systematic uncertainty have been discussed and quantified.This work was done within the project PROMETH2O (EMPIR 20IND06), which received funding from the EMPIR programme cofinanced by the Participating States and from the European Union's Horizon 2020 research and innovation programme

    A novel splice variant of the protein tyrosine phosphatase PTPRJ that encodes for a soluble protein involved in angiogenesis

    Get PDF
    PTPRJ is a receptor protein tyrosine phosphatase with tumor suppressor activity. Very little is known about the role of PTPRJ ectodomain, although recently both physiological and synthetic PTPRJ ligands have been identified. A putative shorter spliced variant, coding for a 539 aa protein corresponding to the extracellular N-terminus of PTPRJ, is reported in several databases but, currently, no further information is available. Here, we confirmed that the PTPRJ short isoform (named sPTPRJ) is a soluble protein secreted into the supernatant of both endothelial and tumor cells. Like PTPRJ, also sPTPRJ undergoes post-translational modifications such as glycosylation, as assessed by sPTPRJ immunoprecipitation. To characterize its functional activity, we performed an endothelial cell tube formation assay and a wound healing assay on HUVEC cells overexpressing sPTPRJ and we found that sPTPRJ has a proangiogenic activity. We also showed that sPTPRJ expression down-regulates endothelial adhesion molecules, that is a hallmark of proangiogenic activity. Moreover, sPTPRJ mRNA levels in human high-grade glioma, one of the most angiogenic tumors, are higher in tumor samples compared to controls. Further studies will be helpful not only to clarify the way sPTPRJ works but also to supply clues to circumvent its activity in cancer therapy

    The enhancement of excitonic emission crossing Saha equilibrium in trap passivated CH3NH3PbBr3 perovskite

    Get PDF
    Metal-halide semiconductor perovskites have received great attention for the development of stable and efficient light emitting diodes and lasers, since they combine high charge carrier mobility and light emission spectral-purity with low-cost fabrication methods. Nevertheless, the role of excitons, free carries and trap states in perovskite light emission properties is still unclear due to their interdependence. In this paper we selectively manage trapping and light emission mechanisms by a reversible laser-assisted trap-passivation process performed on a CH3NH3PbBr3 perovskite layer, coupled to the inner modes of a high-quality micro-cavity, which only affects the radiative recombination. We show that photoluminescence is dominated by exciton radiative decay process and that trap states passivation increases the exciton gemination rate by reducing coulombic scattering of free electrons due to the ionized impurities. This picture provides a more general description than the model based on trap states-free Saha thermodynamic equilibrium between photo-generated species. The interdependence of free carries, trap states and excitons in the light emission properties of CH3NH3PbBr3 perovskite thin films and their relationship to device performance is a subject of debate. Here, the authors investigate the role of non-radiative recombination and demonstrate that the photoluminescence is dominated by exciton radiative decay processes

    Promises and Pitfalls in the Use of PD-1/PD-L1 Inhibitors in Multiple Myeloma

    Get PDF
    In the biology of multiple myeloma (MM), immune dysregulation has emerged as a critical component for novel therapeutic strategies. This dysfunction is due to a reduced antigen presentation, a reduced effector cell ability and a loss of reactive T cells against myeloma, together with a bone marrow microenvironment that favors immune escape. The Programmed Death-1 (PD-1) pathway is associated with the regulation of T cell activation and with the apoptotic pathways of effector memory T cells. Specifically, the binding with PD-1 ligand (PD-L1) on the surface of tumor plasma cells down-regulates T cell-proliferation, thus contributing to the immune escape of tumor cells. In relapsed and/or refractory MM (RRMM) patients, PD-1/PD-L1 blockade was analyzed by using nivolumab, pembrolizumab, and durvalumab. Outcomes with single agents were unsatisfactory, whereas combination strategies with backbone immunomodulatory drugs (IMiDs) suggested a synergistic action in such a complex immunological landscape, even in patients previously refractory to these drugs. Nevertheless, these combinations were also associated with an increased incidence of adverse events. This review aims to analyze the available preclinical and clinical data on the role of PD-1/PD-L1 inhibitors in MM therapy, focusing on available preliminary efficacy and safety data and offering insights for future investigation

    Enhanced fluorescence by metal nanospheres on metal substrates

    Get PDF
    We investigate the metal enhanced fluorescence by silver nanospheres on a thin silver substrate. Experimental measurements for core/shell colloidal nanocrystals embedded in a polymer matrix show a fluorescence enhancement factor of about 9. We apply the discrete dipole approximation method to describe the local-field enhancement factor (LFEF). We find that the observed fluorescence enhancement is related to the broad LFEF profile induced by the substrate

    Tonsillectomy as prevention of tonsil and base of tongue cancer: systematic review and meta-analysis on the immuno-oncological effect of one among the most common surgeries in the world

    Get PDF
    Otorhinolaryngology tradition is that tonsillectomy (TE) is conducted among children and adolescents for obstructive sleep apnea secondary to adenotonsillar hypertrophy and in adults for chronic disease of the tonsils and adenoids (recurrent tonsillitis). Nevertheless, over the last 50 years, we have observed a decline in TE worldwide. As a result, there is an emerging concern of a correlated possible increased risk of tonsil cancer (TC) and other subtypes of oropharyngeal squamous cell carcinoma. Since the available data on such topics are limited and controversial, our aim was to elucidate the impact of TE on the incidence mainly of TC through a systematic review of the literature and a meta-analysis of the studies. After a thorough search, 7 retrospective studies were considered eligible for review and meta-analysis (MA). At MA, patients with a history of TE seem to show a reduced risk of TC but a higher predisposition for base of tongue (BOT) cancer (p[removed]95%). In future, randomized control trials will be welcome to elucidate the prophylactic role of TE against TC and its real impact on BOT cancer
    • …
    corecore