173 research outputs found

    Astroinformatics of galaxies and quasars: a new general method for photometric redshifts estimation

    Get PDF
    With the availability of the huge amounts of data produced by current and future large multi-band photometric surveys, photometric redshifts have become a crucial tool for extragalactic astronomy and cosmology. In this paper we present a novel method, called Weak Gated Experts (WGE), which allows to derive photometric redshifts through a combination of data mining techniques. \noindent The WGE, like many other machine learning techniques, is based on the exploitation of a spectroscopic knowledge base composed by sources for which a spectroscopic value of the redshift is available. This method achieves a variance \sigma^2(\Delta z)=2.3x10^{-4} (\sigma^2(\Delta z) =0.08), where \Delta z = z_{phot} - z_{spec}) for the reconstruction of the photometric redshifts for the optical galaxies from the SDSS and for the optical quasars respectively, while the Root Mean Square (RMS) of the \Delta z variable distributions for the two experiments is respectively equal to 0.021 and 0.35. The WGE provides also a mechanism for the estimation of the accuracy of each photometric redshift. We also present and discuss the catalogs obtained for the optical SDSS galaxies, for the optical candidate quasars extracted from the DR7 SDSS photometric dataset {The sample of SDSS sources on which the accuracy of the reconstruction has been assessed is composed of bright sources, for a subset of which spectroscopic redshifts have been measured.}, and for optical SDSS candidate quasars observed by GALEX in the UV range. The WGE method exploits the new technological paradigm provided by the Virtual Observatory and the emerging field of Astroinformatics.Comment: 36 pages, 22 figures and 8 table

    Identification of the infrared non-thermal emission in Blazars

    Full text link
    Blazars constitute the most interesting and enigmatic class of extragalactic gamma-ray sources dominated by non-thermal emission. In this Letter, we show how the WISE infrared data make possible to identify a distinct region of the [3.4]-[4.6]-[12] micron color-color diagram where the sources dominated by the the thermal radiation are separated from those dominated by non-thermal emission, in particular the blazar population. This infrared non-thermal region delineated as the WISE Blazar Strip (WBS), it is a powerful new diagnostic tool when the full WISE survey data is released. The WBS can be used to extract new blazar candidates, to identify those of uncertain type and also to search for the counterparts of unidentified gamma-ray sources. We show one example of the value of the use of the WBS identifying the TeV source VER J 0648+152, recently discovered by VERITAS.Comment: 5 pages, 4 figures, Astrophysical Journal publishe

    Unidentifed gamma-ray sources: hunting gamma-ray blazars

    Full text link
    One of the main scientific objectives of the ongoing Fermi mission is unveiling the nature of the unidentified gamma-ray sources (UGSs). Despite the large improvements of Fermi in the localization of gamma-ray sources with respect to the past gamma-ray missions, about one third of the Fermi-detected objects are still not associated to low energy counterparts. Recently, using the Wide-Field Infrared Survey Explorer (WISE) survey, we discovered that blazars, the rarest class of Active Galactic Nuclei and the largest population of gamma-ray sources, can be recognized and separated from other extragalactic sources on the basis of their infrared (IR) colors. Based on this result, we designed an association method for the gamma-ray sources to reognize if there is a blazar candidate within the positional uncertainty region of a generic gamma-ray source. With this new IR diagnostic tool, we searched for gamma-ray blazar candidates associated to the UGS sample of the second Fermi gamma-ray catalog (2FGL). We found that our method associates at least one gamma-ray blazar candidate as a counterpart each of 156 out of 313 UGSs analyzed. These new low-energy candidates have the same IR properties as the blazars associated to gamma-ray sources in the 2FGL catalog.Comment: 24 pages, 4 figures, Accepted for publication on the Astrophysical Journa

    Low-mass X-ray binaries and globular clusters streamers and ARCS in NGC 4278

    Get PDF
    We report significant inhomogeneities in the projected two-dimensional spatial distributions of low-mass X-ray binaries (LMXBs) and globular clusters (GCs) of the intermediate mass elliptical galaxy NGC 4278. In the inner region of NGC 4278, a significant arc-like excess of LMXBs extending south of the center at ∼50″ in the western side of the galaxy can be associated with a similar overdensity of the spatial distribution of red GCs from Brassington et al. Using a recent catalog of GCs produced by Usher et al. and covering the whole field of the NGC 4278 galaxy, we have discovered two other significant density structures outside the D 25 isophote to the W and E of the center of NGC 4278, associated with an overdensity and an underdensity, respectively. We discuss the nature of these structures in the context of the similar spatial inhomogeneities discovered in the LMXBs and GCs populations of NGC 4649 and NGC 4261, respectively. These features suggest streamers from disrupted and accreted dwarf companions.Peer reviewe

    New blazars from the cross-match of recent multi-frequency catalogs

    Get PDF
    Blazars are radio-loud active galactic nuclei well known for their non thermal emission spanning a wide range of frequencies. The Roma-BZCAT is, to date, the most comprehensive list of these sources. We performed the cross-match of several catalogs obtained from recent surveys at different frequencies to search for new blazars. We cross-matched the 1st^{st} Swift-XRT Point Source catalog with the spectroscopic sample of the 9th^{th} Data Release of the Sloan Digital Sky Survey. Then, we performed further cross-matches with the catalogs corresponding to the Faint Images of the Radio Sky at Twenty cm survey and to the AllWISE Data release, focusing on sources with infrared colors similar to those of confirmed γ\gamma-ray blazars included in the Second Fermi-LAT catalog. As a result, we obtained a preliminary list of objects with all the elements needed for a proper blazar classification according to the prescriptions of the Roma-BZCAT. We carefully investigated additional properties such as their morphology and the slope of their spectral energy distribution in the radio domain, the features shown in their optical spectrum, and the luminosity in the soft X rays to exclude generic active galactic nuclei and focus on authentic blazar-like sources. At the end of our screening we obtained a list of 15 objects with firmly established blazar properties.Comment: 8 pages, 3 figures, 1 table. Accepted for publication in Astrophysics and Space Science on 2015 April 25. Corrected typo in Section

    Unveiling the nature of the unidentified gamma-ray sources III: gamma-ray blazar-like counterparts at low radio frequencies

    Get PDF
    About one third of the gamma-ray sources listed in the second Fermi LAT catalog (2FGL) have no firmly established counterpart at lower energies so being classified as unidentified gamma-ray sources (UGSs). Here we propose a new approach to find candidate counterparts for the UGSs based on the 325 MHz radio survey performed with Westerbork Synthesis Radio Telescope (WSRT) in the northern hemisphere. First we investigate the low-frequency radio properties of blazars, the largest known population of gamma-ray sources; then we search for sources with similar radio properties combining the information derived from the Westerbork Northern Sky Survey (WENSS) with those of the NRAO VLA Sky survey (NVSS). We present a list of candidate counterparts for 32 UGSs with at least one counterpart in the WENSS. We also performed an extensive research in literature to look for infrared and optical counterparts of the gamma-ray blazar candidates selected with the low-frequency radio observations to confirm their nature. On the basis of our multifrequency research we identify 23 new gamma-ray blazar candidates out of 32 UGSs investigated. Comparison with previous results on the UGSs are also presented. Finally, we speculate on the advantages on the use of the low-frequency radio observations to associate UGSs and to search for gamma-ray pulsar candidates.Comment: 15 pages, 13 figures, 3 tables, ApJS accepted for publication (version pre-proof corrections
    • …
    corecore