617 research outputs found
Cloaking by coating: How effectively does a thin, stiff coating hide a soft substrate?
From human tissue to fruits, many soft materials are coated by a thin layer
of a stiffer material. While the primary role of such a coating is often to
protect the softer material, the thin, stiff coating also has an important
effect on the mechanical behaviour of the composite material, making it appear
significantly stiffer than the underlying material. We study this cloaking
effect of a coating for the particular case of indentation tests, which measure
the `firmness' of the composite solid: we use a combination of theory and
experiment to characterize the firmness quantitatively. We find that the
indenter size plays a key role in determining the effectiveness of cloaking:
small indenters feel a mixture of the material properties of the coating and of
the substrate, while large indenters sense largely the unadulterated substrate
Far From Threshold Buckling Analysis of Thin Films
Thin films buckle easily and form wrinkled states in regions of well defined
size. The extent of a wrinkled region is typically assumed to reflect the zone
of in-plane compressive stresses prior to buckling, but recent experiments on
ultrathin sheets have shown that wrinkling patterns are significantly longer
and follow different scaling laws than those predicted by standard buckling
theory. Here we focus on a simple setup to show the striking differences
between near-threshold buckling and the analysis of wrinkle patterns in very
thin films, which are typically far from threshold.Comment: 4 page
A comparative study of crumpling and folding of thin sheets
Crumpling and folding of paper are at rst sight very di erent ways of con
ning thin sheets in a small volume: the former one is random and stochastic
whereas the latest one is regular and deterministic. Nevertheless, certain
similarities exist. Crumpling is surprisingly ine cient: a typical crumpled
paper ball in a waste-bin consists of as much as 80% air. Similarly, if one
folds a sheet of paper repeatedly in two, the necessary force becomes so large
that it is impossible to fold it more than 6 or 7 times. Here we show that the
sti ness that builds up in the two processes is of the same nature, and
therefore simple folding models allow to capture also the main features of
crumpling. An original geometrical approach shows that crumpling is
hierarchical, just as the repeated folding. For both processes the number of
layers increases with the degree of compaction. We nd that for both processes
the crumpling force increases as a power law with the number of folded layers,
and that the dimensionality of the compaction process (crumpling or folding)
controls the exponent of the scaling law between the force and the compaction
ratio.Comment: 5 page
Capillary deformations of bendable films
We address the partial wetting of liquid drops on ultrathin solid sheets resting on a deformable foundation. Considering the membrane limit of sheets that can relax compression through wrinkling at negligible energetic cost, we revisit the classical theory for the contact of liquid drops on solids. Our calculations and experiments show that the liquid-solid-vapor contact angle is modified from the Young angle, even though the elastic bulk modulus (E) of the sheet is so large that the ratio between the surface tension γ and E is of molecular size. This finding establishes a new type of “soft capillarity” that stems from the bendability of thin elastic bodies rather than from material softness. We also show that the size of the wrinkle pattern that emerges in the sheet is fully predictable, thus resolving a puzzle noticed in several previous attempts to model “drop-on-a-floating-sheet” experiments, and enabling a reliable usage of this setup for the metrology of ultrathin films
First Order Phase Transition of a Long Polymer Chain
We consider a model consisting of a self-avoiding polygon occupying a
variable density of the sites of a square lattice. A fixed energy is associated
with each -bend of the polygon. We use a grand canonical ensemble,
introducing parameters and to control average density and average
(total) energy of the polygon, and show by Monte Carlo simulation that the
model has a first order, nematic phase transition across a curve in the
- plane.Comment: 11 pages, 7 figure
Magnetic Monopoles, Gauge Invariant Dynamical Variables and Georgi Glashow Model
We investigate Georgi-Glashow model in terms of a set of explicitly SO(3)
gauge invariant dynamical variables. In the new description a novel compact
abelian gauge invariance emerges naturally. As a consequence magnetic monopoles
occur as point like "defects" in space time. Their non-perturbative
contribution to the partition function is explicitly included. This procedure
corresponds to dynamical "abelian projection" without gauge fixing. In the
Higgs phase the above abelian invariance is to be identified with
electromagnetism. We also study the effect of term in the above
abelian theory.Comment: 9 pages, Late
Oscillatory fracture path in thin elastic sheet
We report a novel mode of oscillatory crack propagation when a cutting tip is
driven through a thin brittle polymer film. The phenomenon is so robust that it
can easily be reproduced at hand (using CD packaging material for example).
Careful experiments show that the amplitude and wavelength of the oscillatory
crack path scale lineraly with the width of the cutting tip over a wide range
of lenghtscales but are independant of the width of thje sheet and the cutting
speed. A simple geometric model is presented, which provides a simple but
thorough interpretation of the oscillations.Comment: 6 pages, submitted to Comptes Rendus Academie des Sciences. Movies
available at http://www.lmm.jussieu.fr/platefractur
Continuum field description of crack propagation
We develop continuum field model for crack propagation in brittle amorphous
solids. The model is represented by equations for elastic displacements
combined with the order parameter equation which accounts for the dynamics of
defects. This model captures all important phenomenology of crack propagation:
crack initiation, propagation, dynamic fracture instability, sound emission,
crack branching and fragmentation.Comment: 4 pages, 5 figures, submitted to Phys. Rev. Lett. Additional
information can be obtained from http://gershwin.msd.anl.gov/theor
Mortality and immortality : the Nobel Prize as an experiment into the effect of status upon longevity
It has been known for centuries that the rich and famous have longer lives than the poor and ordinary. Causality, however, remains trenchantly debated. The ideal experiment
would be one in which extra status could somehow be dropped upon a sub-sample of individuals while those in a control group of comparable individuals received none. This
paper attempts to formulate a test in that spirit. It collects 19th-century birth data on science Nobel Prize winners. Correcting for potential biases, we estimate that winning the Prize, compared to merely being nominated, is associated with between 1 and 2 years of extra longevity
- …
