19 research outputs found

    Genotypes and haplotypes in the insulin-like growth factors, their receptors and binding proteins in relation to plasma metabolic levels and mammographic density

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Increased mammographic density is one of the strongest independent risk factors for breast cancer. It is believed that one third of breast cancers are derived from breasts with more than 50% density. Mammographic density is affected by age, BMI, parity, and genetic predisposition. It is also greatly influenced by hormonal and growth factor changes in a woman's life cycle, spanning from puberty through adult to menopause. Genetic variations in genes coding for hormones and growth factors involved in development of the breast are therefore of great interest. The associations between genetic polymorphisms in genes from the IGF pathway on mammographic density and circulating levels of IGF1, its binding protein IGFBP3, and their ratio in postmenopausal women are reported here.</p> <p>Methods</p> <p>Samples from 964 postmenopausal Norwegian women aged 55-71 years were collected as a part of the Tromsø Mammography and Breast Cancer Study. All samples were genotyped for 25 SNPs in IGF1, IGF2, IGF1R, IGF2R, IGFALS and IGFBP3 using Taqman (ABI). The main statistical analyses were conducted with the PROC HAPLOTYPE procedure within SAS/GENETICS™ (SAS 9.1.3).</p> <p>Results</p> <p>The haplotype analysis revealed six haploblocks within the studied genes. Of those, four had significant associations with circulating levels of IGF1 or IGFBP3 and/or mammographic density. One haplotype variant in the IGF1 gene was found to be associated with mammographic density. Within the IGF2 gene one haplotype variant was associated with levels of both IGF1 and IGFBP3. Two haplotype variants in the IGF2R were associated with the level of IGF1. Both variants of the IGFBP3 haplotype were associated with the IGFBP3 level and indicate regulation in cis.</p> <p>Conclusion</p> <p>Polymorphisms within the IGF1 gene and related genes were associated with plasma levels of IGF1, IGFBP3 and mammographic density in this study of postmenopausal women.</p

    Assessing sources of inconsistencies in genotypes and their effects on genome-wide association studies with HapMap samples

    Get PDF
    The discordance in results of independent genome-wide association studies (GWAS) indicates the potential for Type I and Type II errors. We assessed the repeatibility of current Affymetrix technologies that support GWAS. Reasonable reproducibility was observed for both raw intensity and the genotypes/copy number variants. We also assessed consistencies between different SNP arrays and between genotype calling algorithms. We observed that the inconsistency in genotypes was generally small at the specimen level. To further examine whether the differences from genotyping and genotype calling are possible sources of variation in GWAS results, an association analysis was applied to compare the associated SNPs. We observed that the inconsistency in genotypes not only propagated to the association analysis, but was amplified in the associated SNPs. Our studies show that inconsistencies between SNP arrays and between genotype calling algorithms are potential sources for the lack of reproducibility in GWAS results

    Genomic convergence analysis of schizophrenia: mRNA sequencing reveals altered synaptic vesicular transport in post-mortem cerebellum.

    Get PDF
    Schizophrenia (SCZ) is a common, disabling mental illness with high heritability but complex, poorly understood genetic etiology. As the first phase of a genomic convergence analysis of SCZ, we generated 16.7 billion nucleotides of short read, shotgun sequences of cDNA from post-mortem cerebellar cortices of 14 patients and six, matched controls. A rigorous analysis pipeline was developed for analysis of digital gene expression studies. Sequences aligned to approximately 33,200 transcripts in each sample, with average coverage of 450 reads per gene. Following adjustments for confounding clinical, sample and experimental sources of variation, 215 genes differed significantly in expression between cases and controls. Golgi apparatus, vesicular transport, membrane association, Zinc binding and regulation of transcription were over-represented among differentially expressed genes. Twenty three genes with altered expression and involvement in presynaptic vesicular transport, Golgi function and GABAergic neurotransmission define a unifying molecular hypothesis for dysfunction in cerebellar cortex in SCZ

    Comparison of Mahalanobis Distances of Gene Expression by Array Hybridization and Sequence Read Frequencies.

    No full text
    <p>14 SCZ samples are indicated by blue circles, and 6 control samples by red circles. The Y-axis shows Mahalanobis distances of log transformed gene expression values. The dotted blue line indicates the cutoff value for outliers. Panel A: Log10 transformed Affymetrix array hybridization signals. Panel B: Log10 transformed genome-aligned read frequencies. Panel C: Log10 transformed transcript-aligned read frequencies. Log10 transformed array hybridization values (A) had a wider distribution of distances than Log10 transformed sequence read frequencies (B,C). Without log transformation, distances were greater and several samples represented outliers (data not shown).</p

    Cartoon illustrating functions and/or synaptic locations of 23 proteins corresponding to genes with altered expression in SCZ.

    No full text
    <p>15 genes were upregulated (green), whereas 8 were downregulated (red). Underlined genes had >30% change in expression. Two genes involved in transport from the endoplasmic reticulum to the Golgi (GOLM1 and GPSN2) were downregulated, ten involved in transport from the trans-Golgi network to the synaptic vesicle were upregulated (GOLGA1, <u>SLC35A3</u>, COG6, TRIP11, AP1G1, ARFGEF2, USO1, <u>ROCK1</u>, RAB9B and <u>VPS35</u>) and two were downregulated (STX10 and ARFRP1), two genes involved with synaptic vesicle exocytosis (<u>EEA1</u> and SYT1) were upregulated and two were downregulated (SV2A and NCDN), one gene involved in receptor-mediated endocytosis was upregulated (AAK1) and one involved in retrograde transport back to the Golgi apparatus was downregulated (SNX17). In addition, three post-synaptic membrane genes showed altered expression: <u>GABRA1</u> (upregulated), ZACN (downregulated) and <u>CACNG2</u> (upregulated).</p
    corecore