1,705 research outputs found

    Entwinement and the emergence of spacetime

    Get PDF
    It is conventional to study the entanglement between spatial regions of a quantum field theory. However, in some systems entanglement can be dominated by "internal", possibly gauged, degrees of freedom that are not spatially organized, and that can give rise to gaps smaller than the inverse size of the system. In a holographic context, such small gaps are associated to the appearance of horizons and singularities in the dual spacetime. Here, we propose a concept of entwinement, which is intended to capture this fine structure of the wavefunction. Holographically, entwinement probes the entanglement shadow -- the region of spacetime not probed by the minimal surfaces that compute spatial entanglement in the dual field theory. We consider the simplest example of this scenario -- a 2d conformal field theory (CFT) that is dual to a conical defect in AdS3 space. Following our previous work, we show that spatial entanglement in the CFT reproduces spacetime geometry up to a finite distance from the conical defect. We then show that the interior geometry up to the defect can be reconstructed from entwinement that is sensitive to the discretely gauged, fractionated degrees of freedom of the CFT. Entwinement in the CFT is related to non-minimal geodesics in the conical defect geometry, suggesting a potential quantum information theoretic meaning for these objects in a holographic context. These results may be relevant for the reconstruction of black hole interiors from a dual field theory.Comment: v2: Sec. 4.3 amende

    The entropy of a hole in spacetime

    Get PDF
    We compute the gravitational entropy of 'spherical Rindler space', a time-dependent, spherically symmetric generalization of ordinary Rindler space, defined with reference to a family of observers traveling along non-parallel, accelerated trajectories. All these observers are causally disconnected from a spherical region H (a 'hole') located at the origin of Minkowski space. The entropy evaluates to S = A/4G, where A is the area of the spherical acceleration horizon, which coincides with the boundary of H. We propose that S is the entropy of entanglement between quantum gravitational degrees of freedom supporting the interior and the exterior of the sphere H.Comment: 9 pages, 1 figure; v2: published version including updated reference

    A hole-ographic spacetime

    Get PDF
    We embed spherical Rindler space -- a geometry with a spherical hole in its center -- in asymptotically AdS spacetime and show that it carries a gravitational entropy proportional to the area of the hole. Spherical AdS-Rindler space is holographically dual to an ultraviolet sector of the boundary field theory given by restriction to a strip of finite duration in time. Because measurements have finite durations, local observers in the field theory can only access information about bounded spatial regions. We propose a notion of Residual Entropy that captures uncertainty about the state of a system left by the collection of local, finite-time observables. For two-dimensional conformal field theories we use holography and the strong subadditivity of entanglement to propose a formula for Residual Entropy and show that it precisely reproduces the areas of circular holes in AdS3. Extending the notion to field theories on strips with variable durations in time, we show more generally that Residual Entropy computes the areas of all closed, inhomogenous curves on a spatial slice of AdS3. We discuss the extension to higher dimensional field theories, the relation of Residual Entropy to entanglement between scales, and some implications for the emergence of space from the RG flow of entangled field theories.Comment: v3: minor typos correcte

    Loop-mediated isothermal amplification (LAMP) assays for the species-specific detection of Eimeria that infect chickens

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Eimeria </it>parasites can cause the disease coccidiosis in poultry and even subclinical infection can incur economic loss. Diagnosis of infection predominantly relies on traditional techniques including lesion scoring and faecal microscopy despite the availability of sensitive molecular assays, largely due to cost and the requirement for specialist equipment. Despite longstanding proven efficacy these traditional techniques demand time and expertise, can be highly subjective and may under-diagnose subclinical disease. Recognition of the tight economic margins prevailing in modern poultry production and the impact of avian coccidiosis on poverty in many parts of the world has highlighted a requirement for a panel of straightforward and sensitive, but cost-effective, <it>Eimeria </it>species-specific diagnostic assays.</p> <p>Results</p> <p>Loop-mediated isothermal amplification (LAMP) is an uncomplicated, quick and relatively inexpensive diagnostic tool. In this study we have developed a panel of species-specific LAMP assays targeting the seven <it>Eimeria </it>species that infect the chicken. Each assay has been shown to be genuinely species-specific with the capacity to detect between one and ten eimerian genomes, equivalent to less than a single mature schizont. Development of a simple protocol for template DNA preparation from tissue collected post mortem with no requirement for specialist laboratory equipment supports the use of these assays in routine diagnosis of eimerian infection. Preliminary field testing supports this hypothesis.</p> <p>Conclusions</p> <p>Development of a panel of sensitive species-specific LAMP assays introduces a valuable new cost-effective tool for use in poultry husbandry.</p

    Immunotherapy for Infarcts: In Vivo Postinfarction Macrophage Modulation Using Intramyocardial Microparticle Delivery of Map4k4 Small Interfering RNA

    Get PDF
    The myeloid cells infiltrating the heart early after acute myocardial infarction elaborate a secretome that largely orchestrates subsequent ventricular wall repair. Regulating this innate immune response could be a means to improve infarct healing. To pilot this concept, we utilized (beta1,3-d-) glucan-encapsulated small interfering RNA (siRNA)-containing particles (GeRPs), targeting mononuclear phagocytes, delivered to mice as a one-time intramyocardial injection immediately after acute infarction. Findings demonstrated that cardiac macrophages phagocytosed GeRPs in vivo and had little systemic dissemination, thus providing a means to deliver local therapeutics. Acute infarcts were then injected in vivo with phosphate-buffered saline (PBS; vehicle) or GeRPs loaded with siRNA to Map4k4, and excised hearts were examined at 3 and 7 days by quantitative polymerase chain reaction, flow cytometry, and histology. Compared with infarcted PBS-treated hearts, hearts with intrainfarct injections of siRNA-loaded GeRPs exhibited 69-89% reductions in transcripts for Map4k4 (mitogen-activated protein kinase kinase kinase kinase 4), interleukin (IL)-1beta, and tumor necrosis factor alpha at 3 days. Expression of other factors relevant to matrix remodeling-monocyte chemoattractant protein-1 (MCP-1), matrix metalloproteinases, hyaluronan synthases, matricellular proteins, and profibrotic factors transforming growth factor beta (TGF-beta), and connective tissue growth factor (CTGF)-were also decreased. Most effects peaked at 3 days, but, in some instances (Map4k4, IL-1beta, TGF-beta, CTGF, versican, and periostin), suppression persisted to 7 days. Thus, direct intramyocardial GeRP injection could serve as a novel and clinically translatable platform for in vivo RNA delivery to intracardiac macrophages for local and selective immunomodulation of the infarct microenvironment
    corecore