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Abstract: We compute the gravitational entropy of “spherical Rindler space”, a time-

dependent, spherically symmetric generalization of ordinary Rindler space, defined with

reference to a family of observers traveling along non-parallel, accelerated trajectories. All

these observers are causally disconnected from a spherical region H (a “hole”) located at

the origin of Minkowski space. The entropy evaluates to S = A/4G, where A is the area

of the spherical acceleration horizon, which coincides with the boundary of H. We propose

that S is the entropy of entanglement between quantum gravitational degrees of freedom

supporting the interior and the exterior of the sphere H.
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1 Introduction

Ordinary Rindler space consists of the spacetime points from which signals can be ex-

changed with a uniformly accelerating observer in Minkowski space. Here we study spher-

ical Rindler space, which consists of spacetime points that can exchange signals with at

least one out of a family of radially accelerating observers. All these observers are causally

disconnected from a spherical region H (a “hole”) of radius R0 located at the origin of

Minkowski space (figure 1). The boundary of H is a horizon. The thermodynamics of this

horizon is subtle, as spherical Rindler space is time-dependent for global reasons — the

observers who define it accelerate in different directions. Thus, to define and compute the

entropy of this spacetime we develop a novel approach, which should extend to a wider

class of time-dependent universes.

Spherical Rindler space is relevant to understanding how spacetime arises from mi-

croscopic degrees of freedom. To see this, recall first that Ryu and Takayanagi have pro-

posed a relation between areas of extremal surfaces in asymptotically anti-de Sitter spaces

and quantum entanglement in a dual field theory [1] (the time-dependent generalization is

in [2]). Extending this idea, Van Raamsdonk has suggested that connectedness in spacetime

arises from entanglement of the underlying quantum gravitational degrees of freedom [3, 4].

In some situations, reducing the entanglement between two gravitating systems can be in-

terpreted as dissecting an otherwise connected spacetime into two disjoint components [5],

each of which ends on a singularity resembling a black hole firewall [6, 7]. Is it possible to

similarly dissect the interior and exterior of a spherical ball in spacetime? In the Discussion

below we put forward a simple argument explaining why the computations presented in

this paper measure the entanglement entropy between the quantum gravity systems inte-

rior and exterior to a spherical ball in flat space. If we lift our computation to anti-de

Sitter space by introducing a tiny negative cosmological constant, this entropy becomes

holographically related to the entanglement between ultraviolet and infrared sectors of a
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dual field theory [8]. We expect this type of entanglement across scales to be a necessary

condition for a quantum system to have a gravitational dual.

When we were preparing this manuscript, a related paper [9] appeared. We comment

on its relation with our work in the Discussion.

2 Spherical Rindler space

Consider (d + 1)-dimensional Minkowski space:

ds2 = −dT 2 + dX2 + d~Y 2
d−1 (2.1)

An accelerated observer can exchange signals with a subregion of the spacetime called

Rindler space. A set of coordinates covering Rindler space is given by:

x =
√

(X −X0)2 − T 2 and t = tanh−1 T

X −X0
(2.2)

With these definitions, the metric takes the form

ds2 = −x2dt2 + dx2 + d~Y 2
d−1 , (2.3)

with x = 0 marking the Rindler horizon.

We are interested in a generalization of Rindler space, which is appropriate for a family

of observers accelerating away from a common center, who are causally disconnected from

a spherical region of radius R0. Starting again with Minkowski space, now in spherical

coordinates,

ds2 = −dT 2 + dR2 + R2dΩ2
d−1 , (2.4)

define spherical Rindler coordinates:

r =
√

(R−R0)2 − T 2 and t = tanh−1 T

R−R0
(2.5)

These coordinates cover the region of Minkowski space from which signals can be exchanged

with at least one observer out of a family of observers accelerating in the radial direction.

This region ends on a horizon, because none of our accelerated observers can see the inside

of a sphere of radius R0 at the center of Minkowski space. The horizon is by construction

spherically symmetric and its size is also given by R0. The metric takes the form:

ds2 = −r2dt2 + dr2 + (R0 + r cosh t)2dΩ2
d−1 (2.6)

We shall refer to this geometry as spherical Rindler space. Its Euclidean continuation is:

ds2E = r2dτ2 + dr2 + (R0 + r cos τ)2dΩ2
d−1 (2.7)

Regularity of this metric at r = 0 and single-valuedness over the sphere require that this

metric be periodic in imaginary time τ ∼ τ + 2π. Thus, the temporal circle pinches off

smoothly at r = 0, just as it does for Euclidean planar Rindler and black hole spaces.

– 2 –
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Figure 1. Spherical Rindler Space

It is well known that planar Rindler space (2.3) has a gravitational entropy given by the

area of the horizon divided by 4G [10]. This entropy, computed from the Einstein-Hilbert

action, is purely gravitational. Our goal is to compute the gravitational entropy of spherical

Rindler space (2.6). A novel feature here is the time-dependence of the metric. This means

that one must be careful when trying to apply formalisms, which were successful in the

conventional, static cases of planar Rindler and black hole spacetimes.

3 Standard techniques

We will recall several standard methods of computing the entropy of static gravitating

spacetimes (see [10–19] and the review [20]). The general idea is to interpret the Euclidean

path integral of gravity with fixed charges and mass as a partition function, so that the

action evaluated on saddlepoints gives a semiclassical approximation to the free energy.

In these saddlepoints, time is compact and interpreted as a thermal circle, which typi-

cally closes off at a point corresponding to the location of the Lorentzian horizon, leading

to a “cigar” geometry. Typically, we have a U(1) invariance around the Eulidean time,

indicating a system in thermal equilibrium. Regularity of the saddlepoint imposes a spe-

cific periodicity on Euclidean time, thus relating the global charges and temperature (e.g.,

β = 8πM when M is the mass of a 4d Schwarzschild black hole). If we consider solutions

with a different periodicity on the thermal circle (i.e., treating mass and temperature as

independent variables for a black hole,) there will be a conical defect at the tip of the

“cigar” where the thermal circle closes off. There are now several ways to compute the

entropy in terms of these geometries.
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(a) Direct computation of the entropy. For a system in equilibrium with energy M ,

free energy F , and inverse temperature β, there is a thermodynamic relation for the entropy:

S = βM − βF (3.1)

To use this equation in gravity, we interpret the Euclidean gravitational action as comput-

ing the free energy (Igravity = βF ) and compute the mass M through other means, e.g.,

by evaluating the ADM mass (see, e.g., [13]). The straightforward application requires a

static Lorentzian geometry or, equivalently, a Euclidean U(1) invariance reflecting ther-

modynamic equilibrium. The metrics (2.6), (2.7) do not näıvely satisfy these properties.

In this approach, the entropy arises from the mass and free energy of the spacetime as a

whole, and is not evidently associated to the horizon.

(b) Smooth variations — varying β and M simultaneously. In this method

we want to evaluate the free energy in the canonical ensemble for gravity as a function

of the inverse temperature β only. Thus, we vary the mass of the spacetime along with

temperature to maintain the appropriate relation between them, and view the resulting

regular Euclidean solutions as classical saddle points of the quantum gravitational path

integral (see, e.g., [16]). Evaluating the action on these solutions yields a free energy

βF (β) = Igravity as a function of the inverse temperature β only. Standard thermodynamics

then provides the entropy as:

S = (β∂β − 1)(βF (β)) (3.2)

Written this way, it is evident that any contribution to the Euclidean action that is linear

in β will not contribute to the entropy. Since we are evaluating the action on smooth

solutions to the vacuum Einstein equations, the only contribution comes from the boundary

terms [13]. If we held the mass fixed while varying β, these boundary terms at infinity

would be proportional to β since the geometries would be locally the same for any β. But

since we are varying the mass M with β to keep the geometries regular, the boundary

terms and the free energy are not proportional to β and give rise to an entropy. Thought

about this way, it is again not obvious that the entropy is associated to the horizon.

To clarify this for planar Rindler and black hole spacetimes, one can split the compu-

tation into a contribution from a disc surrounding the origin (i.e. the Euclidean horizon)

and an annulus extending from the boundary of the disc to infinity (see [14, 20]). Ex-

plicit computation then demonstrates that the boundary terms for the annulus (i.e. one

at infinity and one at the boundary of the disc) combine to give a contribution that is

linear in β. Thus the annulus makes no contribution to the entropy. What remains is the

contribution from the boundary of the disc. This reproduces the entropy computed above

and gives S = A/4GN where A is the area of the horizon. By shrinking the radius of the

disc to an arbitrarily small size, we see that the entropy is associated to the horizon. The

computation can “transport” the entropy to infinity, since this quantity essentially arises

from the topology of the Euclidean saddlepoint.

(c) Conical defects — Varying β keeping the mass fixed. Another way to

compute the entropy is to use (3.2), but varying only β and keeping M fixed. This amounts

– 4 –
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to changing the proper size of the thermal circle without adjusting anything else in the

solution. This introduces a conical defect/excess at the tip of the Euclidean cigar, which

leads to a curvature singularity 4π δβ
β
δ2(P ) localized at the tip of the cigar, i.e. the horizon

(see e.g. [21–23]). If we evaluate the Euclidean action on these solutions, the contributions

from the bulk of the geometry and the boundary at infinity are necessarily proportional to

the periodicity β, since the geometry is locally the same for any β. Thus, these terms will

make no contribution to the entropy after insertion in the formula (3.2). But the conical

singularity makes the additional contribution δβ
β

A

4GN
to the Euclidean action in (3.2), which

once more reproduces the entropy A/4GN .

What is the justification for varying β while keeping the mass fixed, besides the ob-

servation that it reproduces the correct entropy? One can understand this roughly as

follows. The Euclidean path integral can be interpreted as computing Tr e−βH . If we were

doing field theory, not gravity, changing the periodicity of Euclidean time while keeping

spatial slices fixed is equivalent to computing Tr e−(β+δβ)H . In gravity it is not entirely

clear that this interpretation is valid, because there is no local Hamiltonian; if there were

one, the entropy would indeed follow from (3.2). Specifically, if we denote ρ = exp(−βH),

then (3.2) becomes:

(β∂β − 1)
[

− log Tr ρ
1+ δβ

β

]

= (1 − ∂ǫ) log Trρ1+ǫ
∣

∣

ǫ=0
= − ∂ǫTr ρ̂1+ǫ

∣

∣

ǫ=0
= −Tr(ρ̂ log ρ̂)

(3.3)

Here, ρ̂ = ρ/Trρ is the normalized density matrix. Thus, we see that (3.2) indeed computes

the entropy when we only vary β and this interpretation is correct.

(d) Replica trick. The replica trick is closely related to the computation we just out-

lined. Instead of computing Trρ1+ǫ, we compute Trρn for integer n only, and then perform

an analytic continuation in n. This is especially useful whenever it is difficult to compute

Trρ1+ǫ for small ǫ directly. It does, however, assume that Trρn is reasonably well-behaved

and analytic for non-integer n. The replica trick can, for example, break down in spin

glasses [24] (see the review [25]) and in systems with spontaneous symmetry breaking,

but we are not aware of gravitational examples of either phenomenon. We will see that

for spherical Rindler space the replica approach will be most useful, since the Euclidean

continuation (2.7) is well defined up to a conical defect for τ ∼ τ + 2πn, but not for

general periodicities.

4 Entropy of spherical Rindler space — near horizon limit

Recall that the Euclidean spherical Rindler metric (2.7) is periodic in imaginary time τ and

that the temporal circle pinches off smoothly at r = 0, as it does for black holes. Based on

these observations, one might be inclined to associate a temperature to spherical Rindler.

However, the metric is not invariant under translations of τ , raising the issue of whether the

system is in thermal equilibrium or not, and whether standard thermodynamical relations

are applicable.

When is a system in equilibrium? In statistical mechanics, we would check this by

looking at the interface between a system and its heat bath. For a black hole the interface

– 5 –
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is the horizon: this is evident, because the only way to change the temperature of a black

hole is to drop across its horizon an object with a mass comparable to its charges. This

suggests that we can view a gravitational system with a horizon as being in equilibrium

with its thermal bath when its near-horizon geometry is the same as that of a static black

hole. This criterion, which ensures consistency with the zeroth law of thermodynamics, is

satisfied by spherical Rindler space whose near-horizon (r → 0) metric has the leading terms

− r2dt2 + dr2 + R2
0dΩ2

d−1. (4.1)

If the system is in thermal equilibrium, what is then the meaning of the time dependence

of the overall geometry? Our view is that it represents some intrinsic dynamics, which does

not lead to energy flow across the horizon and which also does not carry any entropy. This

is in line with the standard intuition, which associates entropy in general relativity only

to horizons and views smooth geometries as coherent states in the underlying microscopic

system. For example, one could imagine a gravitational wave, which is deflected but not

absorbed by a black hole. Another example, which is time-dependent but does not carry

any entropy, is global de Sitter space.

These considerations lead to a heuristic argument for the entropy of spherical Rindler

space. Consider the near-horizon geometry (4.1) of this space and think of it as capturing

an equilibrium between a system (“hole”) and a heat bath (exterior), which may or may not

itself be in internal equilibrium. Now for the purposes of computing the entropy, any of the

methods discussed in section 3 can be applied. All of these methods yield the same answer,

S =
A

4G
, (4.2)

where A is the area of a (d− 1)-sphere of radius R0.

5 Entropy of spherical Rindler space — replica method

If we drop the a priori assumption that entropy originates from the near-horizon region,

we need a more direct computation of the entropy. Recall that the Euclidean metric is:

ds2E = r2dτ2 + dr2 + (R0 + r cos τ)2dΩ2
d−1 (5.1)

If we ignore the transverse directions, the metric describes the Euclidean plane in polar

coordinates. The periodicity of the τ -direction is β0 = 2π, which can be read off both from

regularity at r = 0 and from single-valuedness of gΩΩ. The center of the polar coordinates is

the Euclidean continuation of the horizon. Looking at the transversal directions, we see that

the size of the sphere goes to zero where r cos τ = −R0, so the space caps off on this locus.

To understand this, change coordinates to R = R0 + r cos τ and TE = r sin τ and recognize

the result as the analytic continuation of (2.4). Importantly, even though our Lorentzian

metric excludes a part of the Minkowski spacetime, the Euclidean continuation does not

know about this exclusion. There is a topological reason for this: while in Lorentzian

signature the horizon is a codimension-1 locus that separates two regions in spacetime,

its Euclidean signature is codimension-2 and can be circumnavigated. In what way, then,

– 6 –
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is the information about the horizon at R0 present in the Euclidean continuation? It is

there as the choice of center of polar coordinates for the τ, r-plane. This choice defines a

vector field, which generates time translations. The Euclidean continuation of the horizon

is r = 0, the locus where ∂/∂τ degenerates.

Looking back at the standard methods in section 3, we see that none of them applies

except for the last one, the replica trick. All the other methods require translational in-

variance in time and global thermal equilibrium. In particular, the direct computation in

Method (a) requires a notion of temperature and mass. It is not clear how the latter quan-

tity should be defined in the absence of time translational invariance, since the standard

ADM definition cannot be applied.

The smooth variations in Method (b) require one to look at a one-parameter family

of smooth solutions as a function of temperature. Although we appear to have a notion

of temperature, it cannot be varied while keeping the solution regular. The only free

parameter we have is R0, but it seems unrelated to the temperature. It would be interesting

to analyze to what extent R0 can be viewed as a thermodynamic variable itself, but for

the time being we cannot apply the first method.

The conical defect approach in Method (c) would require a modification of the tem-

perature while keeping all other parameters fixed. In particular, we would like to keep the

geometry of the t = τ = 0 slice fixed and then look for solutions of the field equations with

different temperatures. In the standard black hole case this gave rise to the conical deficit

solutions. For spherical Rindler this does not work, as the periodicity is determined both

by regularity at r = 0 as well as the presence of terms containing cos τ . A Euclidean metric

of the form

ds2E = a2r2dτ2 + dr2 + (R0 + r cos bτ)2dΩ2
d−1 (5.2)

is only a solution of the Euclidean field equations if a2 = b2, and is then equivalent to (2.7)

by a rescaling of the τ coordinate. There are also no other solutions of the Einstein

equations with the required properties. Spherical symmetry and Birkhoff’s theorem imply

that the solution would have to be of the form of the Euclidean Schwarzschild black hole

with arbitrary periodicity of Euclidean time, but none of these are of the form that we are

looking for.

The absence of semiclassical saddle points describing the trace of the density matrix

Trρ1+ǫ that appears in Method (c) is quite natural if we are dealing with a system with a

time-dependent Hamiltonian H(τ). Writing P for path-ordering, we have

ρ = P exp

{

−

∫ β

0
H(τ)dτ

}

(5.3)

with β = 2π for (2.7), but

ρ1+ǫ 6= P exp

{

−

∫ β(1+ǫ)

0
H(τ)dτ

}

. (5.4)

The entanglement Hamiltonian Ĥ, defined by exp(−βĤ) = ρ, is most likely a complicated

non-local operator, and one does not expect that time evolution by Ĥ is described by

semiclassical saddlepoints for arbitrary time intervals.

– 7 –
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All that remains is the replica trick in Method (d). This method can still be used,

because with the τ -periodicity 2πn (n ∈ N), the Euclidean metric (2.7) is a proper solution

with a conical defect at the origin. We can once more compute the Euclidean partition

function by decomposing the space in terms of a small disc around the origin plus the

remainder. The remainder will be an exact n-fold copy of the n = 1 answer, contributing

Zn
1 to the partition function. The conical defect contributes exp

(

(1 − n)A/4G
)

to the

partition function. Therefore,

log Trρn = (1 − n)
A

4G
+ n log Trρ. (5.5)

This expression has an obvious continuation to non-integer values of n. Up to possible

subtleties associated to the analytic continuation in n mentioned in section 3, the entropy

is then given by acting with (1−∂n) on the above expression and taking n = 1. The result

is once more that

S = A/4G . (5.6)

This derivation complements the heuristic near-horizon argument in the previous section.

6 Discussion

We have calculated the gravitational entropy of spherical Rindler space — a time-dependent

spacetime bounded by an acceleration horizon, which is defined by a family of radially

accelerating observers. The time dependence is a consequence of the fact that the observers’

accelerations are not parallel. We have carried out the calculation in two ways, first using

a near-horizon argument and second using the replica trick, each time obtaining S = A/4G

where A is the area of the horizon.

This may seem surprising. After all, for conventional black holes the large underlying

degeneracy and the horizon are associated to the presence of a mysterious spacetime sin-

gularity, whereas here we are simply dealing with a spherical hole in the well-understood,

empty flat space. One answer has been suggested in [3, 4] (see also [26, 27]). These pa-

pers argue that a necessary condition for a connected, semiclassical spacetime to emerge

from the underlying theory of quantum gravity is entanglement. If so, spacetime should

be viewed as a geometrization of entanglement in the Hilbert space of quantum gravity

microstates, with areas of surfaces computing entanglement entropies connecting comple-

mentary subsectors of the theory [28, 29]. Interpreted in this light, the entropy of spherical

Rindler space should be viewed as the entanglement entropy between the quantum gravity

states describing (the domains of dependence of) the exterior and the interior of a circle

of radius R0. If we add a small negative cosmological constant to lift our computation

to a holographic setup, the entangled degrees of freedom are, respectively, the ultraviolet

and the infrared of the dual field theory. Such entanglement entropy has been computed

for a weakly interacting field theory [8], but it is difficult to extend that computation to

a strongly coupled regime. Perhaps gravitational computations like the one presented in

this paper are the way to do this.

– 8 –
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Our computation provides an independent check of the relation between connectedness

and entanglement. Recall that ordinary (planar) Rindler wedges come in complementary

pairs, which are spacelike separated from one another. Consider an analogous ‘complemen-

tary wedge’ to spherical Rindler space — the region of spacetime, which is spacelike sepa-

rated from every point in spherical Rindler space. Viewed in spherical coordinates (2.4), it

is the domain of dependence of the T = 0 disc R < R0 — i.e., the ‘radial causal diamond’

R± T < R0. Looking back at the definition of the spherical Rindler coordinates (2.5), we

realize that it works equally well for the radial diamond. The only subtlety is that inside

the radial diamond the Rindler time runs backwards, much like in the second asymptotic

region of the eternal black hole. Because the coordinates covering spherical Rindler space

and the radial diamond are related to spherical Minkowski coordinates in the same way, the

Euclidean continuation of both complementary ‘wedges’ is the same, so their entropies must

be equal! This is exactly what we would expect of entanglement entropy of complementary

regions in a pure state.

The recent paper [9] (see also [30]) likewise considers the problem of computing the

gravitational entropy of a time-dependent spacetime. It follows a similar route to the

formal computation presented in this paper, but makes the additional assumption that

smooth gravitational saddlepoints can be found for different periods of Euclidean time.

With this assumption the authors of [9] were able to derive the condition that the origin

of polar coordinates r = 0 must be a minimal surface, apparently extending the result

of [31] and fixing the proof [32] of the Ryu-Takayanagi proposal that was criticized in [33]

(see [34] for a response). For spherical Rindler space, the horizon is a sphere R = R0 in

Minkowski space, so it is not in this sense a minimal surface. Using ref. [9], we can therefore

conclude that the free energy at general β should not be given by the action evaluated on

a regular metric. Indeed, we do not expect this to be the case. As we discussed above, the

effective entanglement Hamiltonian Ĥ (defined as the log of the density matrix generated

by translation around Euclidean time) is likely to be a complicated non-local operator, and

time evolution by Ĥ is unlikely to be described by smooth semiclassical saddlepoints for

arbitrary time intervals.
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