9 research outputs found

    Tüdőtranszplantáció magyar betegek számára

    Get PDF
    When conservative treatment fails, lung transplantation often remains the only therapeutic option for patients with end stage parenchymal or vascular lung diseases. According to the statistics of the International Society for Heart and Lung Transplantation, in 2010 more than 3500 lung transplantations have been performed worldwide. The Department of Thoracic Surgery at the University of Vienna is considered to be one of the world's leading lung transplantation centres; in the last year 115, since 1989 more than 1500 lung transplantation procedures under the supervision of Prof. Dr. Walter Klepetko. Similar to other Central-European countries, lung transplantation procedures of Hungarian patients have also been performed in Vienna whithin the framework of a twinning aggreement. However, many crucial tasks in the process, such indication and patient selection preoperative rehabilitation organ procurement and long term follow-up care have been stepwise taken over by the Hungarian team. Although the surgery itself is still preformed in Vienna, professional experience is already available in Hungary, since the majority of Hungarian recipients have been transplanted by hungarian surgeons who are authors of this article the professional and personal requirements of performing lung transplantations are already available in Hungary. The demand of performing lung transplantation in Hungary has been raising since 1999 and it soon reaches the extent which justifies launching of an individual national program. Providing the technical requirements is a financial an organisational issue. In order to proceed, a health policy decision has to be made

    Comparison of exhaled breath condensate pH using two commercially available devices in healthy controls, asthma and COPD patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Analysis of exhaled breath condensate (EBC) is a non-invasive method for studying the acidity (pH) of airway secretions in patients with inflammatory lung diseases.</p> <p>Aim</p> <p>To assess the reproducibility of EBC pH for two commercially available devices (portable RTube and non-portable ECoScreen) in healthy controls, patients with asthma or COPD, and subjects suffering from an acute cold with lower-airway symptoms. In addition, we assessed the repeatability in healthy controls.</p> <p>Methods</p> <p>EBC was collected from 40 subjects (n = 10 in each of the above groups) using RTube and ECoScreen. EBC was collected from controls on two separate occasions within 5 days. pH in EBC was assessed after degasification with argon for 20 min.</p> <p>Results</p> <p>In controls, pH-measurements in EBC collected by RTube or ECoScreen showed no significant difference between devices (p = 0.754) or between days (repeatability coefficient RTube: 0.47; ECoScreen: 0.42) of collection. A comparison between EBC pH collected by the two devices in asthma, COPD and cold patients also showed good reproducibility. No differences in pH values were observed between controls (mean pH 8.27; RTube) and patients with COPD (pH 7.97) or asthma (pH 8.20), but lower values were found using both devices in patients with a cold (pH 7.56; RTube, p < 0.01; ECoScreen, p < 0.05).</p> <p>Conclusion</p> <p>We conclude that pH measurements in EBC collected by RTube and ECoScreen are repeatable and reproducible in healthy controls, and are reproducible and comparable in healthy controls, COPD and asthma patients, and subjects with a common cold.</p

    Comparative analysis of selected exhaled breath biomarkers obtained with two different temperature-controlled devices

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The collection of exhaled breath condensate (EBC) is a suitable and non-invasive method for evaluation of airway inflammation. Several studies indicate that the composition of the condensate and the recovery of biomarkers are affected by physical characteristics of the condensing device and collecting circumstances. Additionally, there is an apparent influence of the condensing temperature, and often the level of detection of the assay is a limiting factor. The ECoScreen2 device is a new, partly single-use disposable system designed for studying different lung compartments.</p> <p>Methods</p> <p>EBC samples were collected from 16 healthy non-smokers by using the two commercially available devices ECoScreen2 and ECoScreen at a controlled temperature of -20°C. EBC volume, pH, NOx, LTB<sub>4</sub>, PGE<sub>2</sub>, 8-isoprostane and cys-LTs were determined.</p> <p>Results</p> <p>EBC collected with ECoScreen2 was less acidic compared to ECoScreen. ECoScreen2 was superior concerning condensate volume and detection of biomarkers, as more samples were above the detection limit (LTB<sub>4 </sub>and PGE<sub>2</sub>) or showed higher concentrations (8-isoprostane). However, NOx was detected only in EBC sampled by ECoScreen.</p> <p>Conclusion</p> <p>ECoScreen2 in combination with mediator specific enzyme immunoassays may be suitable for measurement of different biomarkers. Using this equipment, patterns of markers can be assessed that are likely to reflect the complex pathophysiological processes in inflammatory respiratory disease.</p

    Randomized Phase II Study of Paclitaxel plus Alisertib versus Paclitaxel plus Placebo as Second-Line Therapy for SCLC: Primary and Correlative Biomarker Analyses

    No full text
    INTRODUCTION: We assessed the Aurora A kinase inhibitor, alisertib, plus paclitaxel (henceforth referred to as alisertib/paclitaxel) as second-line treatment for SCLC. METHODS: In this double-blind study, patients with relapsed or refractory SCLC were stratified by relapse type (sensitive versus resistant or refractory) and brain metastases and randomized 1:1 to alisertib/paclitaxel or placebo plus paclitaxel (henceforth referred to as placebo/paclitaxel) in 28-day cycles. The primary end point was progression-free survival (PFS). Associations of c-Myc expression in tumor tissue (prespecified) and genetic alterations in circulating tumor DNA (retrospective) with clinical outcome were evaluated. RESULTS: A total of 178 patients were enrolled (89 in each arm). The median PFS was 3.32 months with alisertib/paclitaxel versus 2.17 months with placebo/paclitaxel (hazard ratio [HR] = 0.77, 95% confidence limit [CI]: 0.557-1.067, p = 0.113 in the intent-to-treat population versus HR = 0.71, 95% CI: 0.509-0.985, p = 0.038 with corrected analysis applied). Among 140 patients with genetic alternations, patients with cell cycle regulator mutations (cyclin-dependent kinase 6 gene [CDK6], retinoblastoma-like 1 gene [RBL1], retinoblastoma-like 2 gene [RBL2], and retinoblastoma 1 gene [RB1]) had significantly improved PFS with alisertib/paclitaxel versus with placebo/paclitaxel (3.68 versus 1.80 months, respectively [HR = 0.395, 95% CI: 0.239-0.654, p = 0.0003]), and overall survival (7.20 versus 4.47 months, respectively [HR = 0.427, 95% CI: 0.259-0.704, p = 0.00085]). A subset of patients with c-Myc expression showed significantly improved PFS with alisertib/paclitaxel. The incidence of grade 3 or higher drug-related adverse events was 67% (58 patients) with alisertib/paclitaxel versus 22% (25 patients) with placebo/paclitaxel. Twelve patients (14%) versus 11 (12%) died on study, including four versus zero treatment-related deaths. CONCLUSIONS: Efficacy signals were seen with alisertib/paclitaxel in relapsed or refractory SCLC. c-Myc expression and mutations in cell cycle regulators may be potential predictive biomarkers of alisertib efficacy; further prospective validations are warranted.status: publishe

    Randomized Phase II Study of Paclitaxel plus Alisertib versus Paclitaxel plus Placebo as Second-Line Therapy for SCLC: Primary and Correlative Biomarker Analyses.

    Get PDF
    We assessed the Aurora A kinase inhibitor, alisertib, plus paclitaxel (henceforth referred to as alisertib/paclitaxel) as second-line treatment for SCLC. In this double-blind study, patients with relapsed or refractory SCLC were stratified by relapse type (sensitive versus resistant or refractory) and brain metastases and randomized 1:1 to alisertib/paclitaxel or placebo plus paclitaxel (henceforth referred to as placebo/paclitaxel) in 28-day cycles. The primary end point was progression-free survival (PFS). Associations of c-Myc expression in tumor tissue (prespecified) and genetic alterations in circulating tumor DNA (retrospective) with clinical outcome were evaluated. A total of 178 patients were enrolled (89 in each arm). The median PFS was 3.32 months with alisertib/paclitaxel versus 2.17 months with placebo/paclitaxel (hazard ratio [HR] = 0.77, 95% confidence limit [CI]: 0.557-1.067, p = 0.113 in the intent-to-treat population versus HR = 0.71, 95% CI: 0.509-0.985, p = 0.038 with corrected analysis applied). Among 140 patients with genetic alternations, patients with cell cycle regulator mutations (cyclin-dependent kinase 6 gene [CDK6], retinoblastoma-like 1 gene [RBL1], retinoblastoma-like 2 gene [RBL2], and retinoblastoma 1 gene [RB1]) had significantly improved PFS with alisertib/paclitaxel versus with placebo/paclitaxel (3.68 versus 1.80 months, respectively [HR = 0.395, 95% CI: 0.239-0.654, p = 0.0003]), and overall survival (7.20 versus 4.47 months, respectively [HR = 0.427, 95% CI: 0.259-0.704, p = 0.00085]). A subset of patients with c-Myc expression showed significantly improved PFS with alisertib/paclitaxel. The incidence of grade 3 or higher drug-related adverse events was 67% (58 patients) with alisertib/paclitaxel versus 22% (25 patients) with placebo/paclitaxel. Twelve patients (14%) versus 11 (12%) died on study, including four versus zero treatment-related deaths. Efficacy signals were seen with alisertib/paclitaxel in relapsed or refractory SCLC. c-Myc expression and mutations in cell cycle regulators may be potential predictive biomarkers of alisertib efficacy; further prospective validations are warranted
    corecore