16 research outputs found
Doppelt hoch angeregte Zustände von Helium : partielle Wirkungsquerschnitte und Winkelverteilungen der Elektronenemission
Das Spektrum der Einfachionisation von Helium unterhalb der Doppelionisationsschwelle bei 79 eV ist reich an komplexen Strukturen. Eine Vielzahl von Resonanzen tritt dort auf. Diese Resonanzen sind unmittelbar verbunden mit doppelt angeregten Zuständen von Helium. Unterhalb einer Photonenenergie von ca. 77 eV liegen diese Resonanzen geordnet vor, und sie können dort mit Hilfe weniger Quantenzahlen klassifiziert werden. Das trifft aber nicht auf den Bereich dicht unterhalb der Doppelionisationsschwelle zu, d.h. zwischen ca. 78,2 eV und 79 eV. Hier verlieren die bis dahin verwendeten Quantenzahlen ihre Gültigkeit. Dieses Gebiet ist sowohl theoretisch als auch experimentell nahezu unerforscht. Traditionelle experimentelle Methoden stoßen hier auf Hindernisse, die auch in den kommenden Jahren höchstwahrscheinlich nicht überwunden werden können. Das größte Problem hierbei sind die sehr geringen Reaktionsraten. Aus diesem Grund wurde im Rahmen dieser Arbeit ein neuer Weg gewählt, der diese Probleme weitgehend hinter sich läßt und Untersuchungen in dieser äußerst schwer zugänglichen Region ermöglicht. Die neue Technik weist gegenüber bisherigen Methoden eine um mehrere Größenordnungen gesteigerte Nachweiseffizienz auf, wodurch Messungen in diesem Energiebereich innerhalb eines vernünftigen Zeitrahmens praktisch erst ermöglicht werden. Erreicht wird dies durch ein Spektrometer, das zu allen Raumrichtungen hin sensitiv ist und die Impulse und Flugrichtungen der emittierten Elektronen individuell für jede einzelne Reaktion nachweisen kann. Die Elektronen werden zusammen mit dem jeweiligen He+-Ion in Koinzidenz nachgewiesen, wodurch eine sehr effiziente Unterdrückung von Untergrundereignissen realisiert wird. Die vorgestellte Meßmethode basiert auf der sogenannten Coltrims-Technik, die seit einigen Jahren im Bereich der Atom- und Molekülphysik äußerst erfolgreich eingesetzt wird. Ihre Anwendung auf niederenergetische Elektronen mit kinetischen Energien im Bereich zwischen 0 eV und 0,5 eV war bisher jedoch nur sehr eingeschränkt möglich und mit großen Unsicherheiten verbunden, da in diesem Fall die Einflüsse verschiedener Störquellen wie beispielsweise das Erdmagnetfeld berücksichtigt werden müssen. Diese Probleme konnten gelöst werden, so daß nun auch winkelaufgelöste Messungen an Elektronen mit weniger als 100 meV kinetischer Energie möglich sind. Die Apparatur wurde im Rahmen einer Messung am Berliner Synchrotron BESSY II erfolgreich eingesetzt. Untersucht wurden die partiellen Wirkungsquerschnitte sN(E) der verschiedenen Ausgangskanäle der Reaktion g(E) + He -> He** -> e- + He+(N), wobei E die Photonenenergie und N die Hauptquantenzahl des erzeugten Heliumions ist. Zusätzlich wurde zu jedem dieser Reaktionskanäle die Winkelverteilung bN(E) der emittierten Elektronen bestimmt. Ziel der Messung war es, zunächst einen Bereich des Energiespektrums abzudecken, für den theoretische Vorhersagen existieren. Im weiteren Verlauf der Messung wurde dieser Bereich ausgedehnt bis hin zur Doppelionisationsschwelle. Die Ergebnisse werden verschiedenen theoretischen Vorhersagen gegenübergestellt und diskutiert. Die aufgenommenen Daten umfassen auch Bereiche des Energiespektrums, für die noch keine theoretischen Ergebnisse vorliegen (78,3 eV<E<78,9 eV). Die hier beobachteten Verhaltensweisen insbesondere der Winkelverteilungen der emittierten Elektronen werden mit veröffentlichten Daten verglichen, die bei einer Photonenenergie von E=80,1 eV aufgenommen wurden, d.h. dicht oberhalb der Doppelionisationsschwelle. Die beobachteten Parallelen können innerhalb eines klassischen Modells interpretiert werden
Fragmentierung diatomarer Moleküle durch langsame Stoßprozesse
Es wurden erstmals die Reaktionen Double-Capture, Transferionisation und Single-Capture mit vollständiger Winkelauflösung und Messung der Streuebene des Projektils bei einer Projektilenergie von 3,3keV/amu untersucht
Observation of the Efimov state of the helium trimer
Quantum theory dictates that upon weakening the two-body interaction in a
three-body system, an infinite number of three-body bound states of a huge
spatial extent emerge just before these three-body states become unbound. Three
helium atoms have been predicted to form a molecular system that manifests this
peculiarity under natural conditions without artificial tuning of the
attraction between particles by an external field. Here we report experimental
observation of this long predicted but experimentally elusive Efimov state of
He by means of Coulomb explosion imaging. We show spatial images of
an Efimov state, confirming the predicted size and a typical structure where
two atoms are close to each other while the third is far away
A new endstation for extreme-ultraviolet spectroscopy of free clusters and nanodroplets
We present a new endstation for the AMOLine of the ASTRID2 synchrotron at
Aarhus University, which combines a cluster and nanodroplet beam source with a
velocity map imaging and time-of-flight spectrometer for coincidence imaging
spectroscopy. Extreme-ultraviolet spectroscopy of free nanoparticles is a
powerful tool for studying the photophysics and photochemistry of resonantly
excited or ionized nanometer-sized condensed-phase systems. Here we demonstrate
this capability by performing photoelectron-photoion coincidence (PEPICO)
experiments with pure and doped superfluid helium nanodroplets. Different
doping options and beam sources provide a versatile platform to generate
various van der Waals clusters as well as He nanodroplets. We present a
detailed characterization of the new setup and present examples of its use for
measuring high-resolution yield spectra of charged particles, time-of-flight
ion mass spectra, anion-cation coincidence spectra, multi-coincidence electron
spectra and angular distributions. A particular focus of the research with this
new endstation is on intermolecular charge and energy-transfer processes in
heterogeneous nanosystems induced by valence-shell excitation and ionization.Comment: 28 pages, 17 figures, submitted to Review of Scientific Instrument
Recommended from our members
Complete photo-fragmentation of the deuterium molecule
All properties of molecules, from binding and excitation energies to their geometry, are determined by the highly correlated initial state wavefunction of the electrons and nuclei. Perhaps surprisingly, details of these correlations can be revealed by studying the break-up of these systems into their constituents. The fragmentation might be initiated by the absorption of a single photon [1, 2, 3, 4, 5, 6], collision with a charged particle [7, 8] or exposure to a strong laser pulse [9, 10]. If the exciting interaction is sufficiently understood, one can use the fragmentation process as a tool to learn about the bound initial state [11, 12]. However, often the interaction and the fragment motions pose formidable challenges to quantum theory [13, 14, 15]. Here we report the coincident measurement of the momenta of both nuclei and both electrons from the single photon induced fragmentation of the deuterium molecule. The results reveal that the correlated motion of the electrons is strongly dependent on the inter-nuclear separation in the molecular ground state at the instant of photon absorption
Recommended from our members
Complete photo-fragmentation of the deuterium molecule
All properties of molecules, from binding and excitation energies to their geometry, are determined by the highly correlated initial state wavefunction of the electrons and nuclei. Perhaps surprisingly, details of these correlations can be revealed by studying the break-up of these systems into their constituents. The fragmentation might be initiated by the absorption of a single photon [1, 2, 3, 4, 5, 6], collision with a charged particle [7, 8] or exposure to a strong laser pulse [9, 10]. If the exciting interaction is sufficiently understood, one can use the fragmentation process as a tool to learn about the bound initial state [11, 12]. However, often the interaction and the fragment motions pose formidable challenges to quantum theory [13, 14, 15]. Here we report the coincident measurement of the momenta of both nuclei and both electrons from the single photon induced fragmentation of the deuterium molecule. The results reveal that the correlated motion of the electrons is strongly dependent on the inter-nuclear separation in the molecular ground state at the instant of photon absorption