298 research outputs found

    Thermodynamics of the two-dimensional Falicov-Kimball model: a classical Monte Carlo study

    Full text link
    The two-dimensional Falicov-Kimball (FK) model is analyzed using Monte Carlo method. In the case of concentrations of both itinerant and localized particles equal to 0.5 we determine temperature dependence of specific heat, charge density wave susceptibility and density-density correlation function. In the weak interaction regime we find a first order transition to the ordered state and anomalous temperature dependence of the correlation function. We construct the phase diagram of half-filled FK model. Also, the role of next-nearest-neighbor hopping on the phase diagram is analyzed. Lastly, we discuss the density of states and the spectral functions for the mobile particles in weak and strong interaction regime.Comment: 15 pages, RevTe

    Ising t-J model close to half filling: A Monte Carlo study

    Full text link
    Within the recently proposed doped-carrier representation of the projected lattice electron operators we derive a full Ising version of the t-J model. This model possesses the global discrete Z_2 symmetry as a maximal spin symmetry of the Hamiltonian at any values of the coupling constants, t and J. In contrast, in the spin anisotropic limit of the t-J model, usually referred to as the t-J_z model, the global SU(2) invariance is fully restored at J_z=0, so that only the spin-spin interaction has in that model the true Ising form. We discuss a relationship between those two models and the standard isotropic t-J model. We show that the low-energy quasiparticles in all three models share the qualitatively similar properties at low doping and small values of J/t. The main advantage of the proposed Ising t-J model over the t-J_z one is that the former allows for the unbiased Monte Carlo calculations on large clusters of up to 10^3 sites. Within this model we discuss in detail the destruction of the antiferromagnetic order by doping as well as the interplay between the AF order and hole mobility. We also discuss the effect of the exchange interaction and that of the next nearest neighbour hoppings on the destruction of the AF order at finite doping. We show that the short-range AF order is observed in a wide range of temperatures and dopings, much beyond the boundaries of the AF phase. We explicitly demonstrate that the local no double occupancy constraint plays the dominant role in destroying the magnetic order at finite doping. Finally, a role of inhomogeneities is discussed.Comment: 24 pages, 10 figure

    Mechanisms of immune modulation in the tumor microenvironment and implications for targeted therapy

    Get PDF
    Cancer; Immunosuppression mechanisms; Tumor microenvironmentCáncer; Mecanismos de inmunosupresión; Microambiente tumoralCàncer; Mecanismes d'immunosupressió; Microambient tumoralThe efficacy of cancer therapies is limited to a great extent by immunosuppressive mechanisms within the tumor microenvironment (TME). Numerous immune escape mechanisms have been identified. These include not only processes associated with tumor, immune or stromal cells, but also humoral, metabolic, genetic and epigenetic factors within the TME. The identification of immune escape mechanisms has enabled the development of small molecules, nanomedicines, immune checkpoint inhibitors, adoptive cell and epigenetic therapies that can reprogram the TME and shift the host immune response towards promoting an antitumor effect. These approaches have translated into series of breakthroughs in cancer therapies, some of which have already been implemented in clinical practice. In the present article the authors provide an overview of some of the most important mechanisms of immunosuppression within the TME and the implications for targeted therapies against different cancers

    Phase transitions in a spinless, extended Falicov-Kimball model on the triangular lattice

    Full text link
    A numerical diagonalization technique with canonical Monte-Carlo simulation algorithm is used to study the phase transitions from low temperature (ordered) phase to high temperature (disordered) phase of spinless Falicov-Kimball model on a triangular lattice with correlated hopping (tt^{\prime}). It is observed that the low temperature ordered phases (i.e. regular, bounded and segregated) persist up to a finite critical temperature (TcT_{c}). In addition, we observe that the critical temperature decreases with increasing the correlated hopping in regular and bounded phases whereas it increases in the segregated phase. Single and multi peak patterns seen in the temperature dependence of specific heat (CvC_v) and charge susceptibility (χ\chi) for different values of parameters like on-site Coulomb correlation strength (UU), correlated hopping (tt^{\prime}) and filling of localized electrons (nfn_{f}) are also discussed.Comment: 6 pages, 5 figure

    Phase transitions in the spinless Falicov-Kimball model with correlated hopping

    Full text link
    The canonical Monte-Carlo is used to study the phase transitions from the low-temperature ordered phase to the high-temperature disordered phase in the two-dimensional Falicov-Kimball model with correlated hopping. As the low-temperature ordered phase we consider the chessboard phase, the axial striped phase and the segregated phase. It is shown that all three phases persist also at finite temperatures (up to the critical temperature τc\tau_c) and that the phase transition at the critical point is of the first order for the chessboard and axial striped phase and of the second order for the segregated phase. In addition, it is found that the critical temperature is reduced with the increasing amplitude of correlated hopping tt' in the chessboard phase and it is strongly enhanced by tt' in the axial striped and segregated phase.Comment: 17 pages, 6 figure

    Placental expression of eNOS, iNOS and the major protein components of caveolae in women with pre-eclampsia

    Get PDF
    Caveolae regulate many cardiovascular functions and thus could be of interest in relation to pre-eclampsia, a pregnancy specific disorder characterised by hypertension and proteinuria. We examined placental mRNA and protein expression/localisation of the caveolae components Caveolin 1-3, Cavin 1-4 as well as eNOS/ iNOS in normotensive control (n=24) and pre-eclamptic pregnancies (n=19). Placental mRNA expression of caveolin-1, cavin 1-3, was lower and eNOS expression was increased in pre-eclampsia (P<0.05 for all). Additionally Caveolin-1 protein expression was also reduced in pre-eclampsia (P=0.007); this could be an adaptive response in pre-eclampsia, possibly to attenuate the oxidative stress/inflammation

    The fate and behavior of selected endocrine disrupting chemicals in full scale wastewater and sludge treatment unit processes

    Get PDF
    Endocrine disrupting chemicals are discharged into the environment mainly through wastewater treatment processes. There is a need for better understanding of the fate of these compounds in the unit processes of treatment plant to optimize their removal. The fate of oestrone, 17β-estradiol, 17α-ethinyestradiol and nonylphenol in the unit processes of full scale wastewater treatment plants in the UK, including activated sludge plant, oxidation ditch, biofilter and rotating biological contractor were investigated. The overall removal efficiencies of all the compounds ranged from 41 % to 100 %. The removals were predominantly during the secondary biological treatment with the rates of removal related to the nitrification rates and the sludge age. The removal efficiency of the treatment processes were in the order activated sludge > oxidation ditch > biofilter > rotating biological contractors. Activated sludge plant configured for biological nutrient removal showed better removal of the endocrine disrupting chemicals compared to conventional activated sludge plant effluents. Tertiary treatment was also significant in the removal process through solids removal. Overall mechanisms of removal were biodegradation and sorption unto sludge biomass. Phytoremediation was also significant in the removal processes. The endocrine disrupting chemicals persisted in the anaerobic sludge digestion process with percentage removals ranging fro 10-48 %. Sorption of the endocrine disrupting chemicals onto the sludge increased with increasing values for the partitioning coefficients and the organic carbon contents of the sludge
    corecore