113 research outputs found

    Epidemiology and risk factors for pneumonia severity and mortality in Bangladeshi children <5 years of age before 10-valent pneumococcal conjugate vaccine introduction

    Get PDF
    Abstract Background Pneumonia is the leading infectious cause of morbidity and mortality in young children in Bangladesh. We present the epidemiology of pneumonia in Bangladeshi children <5 years before 10-valent pneumococcal conjugate vaccine introduction and investigate factors associated with disease severity and mortality. Methods Children aged 2–59 months admitted to three Bangladeshi hospitals with pneumonia (i.e., cough or difficulty breathing and age-specific tachypnea without danger signs) or severe pneumonia (i.e., cough or difficulty breathing and ≄1 danger signs) were included. Demographic, clinical, laboratory, and vaccine history data were collected. We assessed associations between characteristics and pneumonia severity and mortality using multivariable logistic regression. Results Among 3639 Bangladeshi children with pneumonia, 61% had severe disease, and 2% died. Factors independently associated with severe pneumonia included ages 2–5 months (adjusted odds ratio [aOR] 1.60 [95% CI: 1.26–2.01]) and 6–11 months (aOR 1.31 [1.10–1.56]) relative to 12–59 months, low weight for age (aOR 1.22 [1.04–1.42]), unsafe drinking water source (aOR 2.00 [1.50–2.69]), higher paternal education (aOR 1.34 [1.15–1.57]), higher maternal education (aOR 0.74 [0.64–0.87]), and being fully vaccinated for age with pentavalent vaccination (aOR 0.64 [0.51–0.82]). Increased risk of pneumonia mortality was associated with age <12 months, low weight for age, unsafe drinking water source, lower paternal education, disease severity, and having ≄1 co-morbid condition. Conclusions Modifiable factors for severe pneumonia and mortality included low weight for age and access to safe drinking water. Improving vaccination status could decrease disease severity

    Case-control vaccine effectiveness studies: Preparation, design, and enrollment of cases and controls.

    Get PDF
    Case-control studies are commonly used to evaluate effectiveness of licensed vaccines after deployment in public health programs. Such studies can provide policy-relevant data on vaccine performance under 'real world' conditions, contributing to the evidence base to support and sustain introduction of new vaccines. However, case-control studies do not measure the impact of vaccine introduction on disease at a population level, and are subject to bias and confounding, which may lead to inaccurate results that can misinform policy decisions. In 2012, a group of experts met to review recent experience with case-control studies evaluating the effectiveness of several vaccines; here we summarize the recommendations of that group regarding best practices for planning, design and enrollment of cases and controls. Rigorous planning and preparation should focus on understanding the study context including healthcare-seeking and vaccination practices. Case-control vaccine effectiveness studies are best carried out soon after vaccine introduction because high coverage creates strong potential for confounding. Endpoints specific to the vaccine target are preferable to non-specific clinical syndromes since the proportion of non-specific outcomes preventable through vaccination may vary over time and place, leading to potentially confusing results. Controls should be representative of the source population from which cases arise, and are generally recruited from the community or health facilities where cases are enrolled. Matching of controls to cases for potential confounding factors is commonly used, although should be reserved for a limited number of key variables believed to be linked to both vaccination and disease. Case-control vaccine effectiveness studies can provide information useful to guide policy decisions and vaccine development, however rigorous preparation and design is essential

    Case-control vaccine effectiveness studies: Data collection, analysis and reporting results.

    Get PDF
    The case-control methodology is frequently used to evaluate vaccine effectiveness post-licensure. The results of such studies provide important insight into the level of protection afforded by vaccines in a 'real world' context, and are commonly used to guide vaccine policy decisions. However, the potential for bias and confounding are important limitations to this method, and the results of a poorly conducted or incorrectly interpreted case-control study can mislead policies. In 2012, a group of experts met to review recent experience with case-control studies evaluating vaccine effectiveness; we summarize the recommendations of that group regarding best practices for data collection, analysis, and presentation of the results of case-control vaccine effectiveness studies. Vaccination status is the primary exposure of interest, but can be challenging to assess accurately and with minimal bias. Investigators should understand factors associated with vaccination as well as the availability of documented vaccination status in the study context; case-control studies may not be a valid method for evaluating vaccine effectiveness in settings where many children lack a documented immunization history. To avoid bias, it is essential to use the same methods and effort gathering vaccination data from cases and controls. Variables that may confound the association between illness and vaccination are also important to capture as completely as possible, and where relevant, adjust for in the analysis according to the analytic plan. In presenting results from case-control vaccine effectiveness studies, investigators should describe enrollment among eligible cases and controls as well as the proportion with no documented vaccine history. Emphasis should be placed on confidence intervals, rather than point estimates, of vaccine effectiveness. Case-control studies are a useful approach for evaluating vaccine effectiveness; however careful attention must be paid to the collection, analysis and presentation of the data in order to best inform evidence-based vaccine policies

    Event-by-event reconstruction of the shower maximum XmaxX_{\mathrm{max}} with the Surface Detector of the Pierre Auger Observatory using deep learning

    Get PDF

    Extraction of the Muon Signals Recorded with the Surface Detector of the Pierre Auger Observatory Using Recurrent Neural Networks

    Get PDF
    We present a method based on the use of Recurrent Neural Networks to extract the muon component from the time traces registered with water-Cherenkov detector (WCD) stations of the Surface Detector of the Pierre Auger Observatory. The design of the WCDs does not allow to separate the contribution of muons to the time traces obtained from the WCDs from those of photons, electrons and positrons for all events. Separating the muon and electromagnetic components is crucial for the determination of the nature of the primary cosmic rays and properties of the hadronic interactions at ultra-high energies. We trained a neural network to extract the muon and the electromagnetic components from the WCD traces using a large set of simulated air showers, with around 450 000 simulated events. For training and evaluating the performance of the neural network, simulated events with energies between 1018.5, eV and 1020 eV and zenith angles below 60 degrees were used. We also study the performance of this method on experimental data of the Pierre Auger Observatory and show that our predicted muon lateral distributions agree with the parameterizations obtained by the AGASA collaboration

    A search for ultra-high-energy photons at the Pierre Auger Observatory exploiting air-shower universality

    Get PDF
    The Pierre Auger Observatory is the most sensitive detector to primary photons with energies above ∌0.2 EeV. It measures extensive air showers using a hybrid technique that combines a fluorescence detector (FD) with a ground array of particle detectors (SD). The signatures of a photon-induced air shower are a larger atmospheric depth at the shower maximum (Xmax_{max}) and a steeper lateral distribution function, along with a lower number of muons with respect to the bulk of hadron-induced background. Using observables measured by the FD and SD, three photon searches in different energy bands are performed. In particular, between threshold energies of 1-10 EeV, a new analysis technique has been developed by combining the FD-based measurement of Xmax_{max} with the SD signal through a parameter related to its muon content, derived from the universality of the air showers. This technique has led to a better photon/hadron separation and, consequently, to a higher search sensitivity, resulting in a tighter upper limit than before. The outcome of this new analysis is presented here, along with previous results in the energy ranges below 1 EeV and above 10 EeV. From the data collected by the Pierre Auger Observatory in about 15 years of operation, the most stringent constraints on the fraction of photons in the cosmic flux are set over almost three decades in energy
    • 

    corecore