6 research outputs found

    Towards a foundation for holistic power system validation and testing

    Get PDF
    Renewable energy sources and further electrificationof energy consumption are key enablers for decreasing green-house gas emissions, but also introduce increased complexitywithin the electric power system. The increased availability ofautomation, information and communication technology, andintelligent solutions for system operation have transformed thepower system into a smart grid. In order to support thedevelopment process of smart grid solutions on the system level,testing has to be done in a holistic manner, covering the multi-domain aspect of such complex systems. This paper introducesthe concept of holistic power system testing and discuss first stepstowards a corresponding methodology that is being developed inthe European ERIGrid research infrastructure project.Comment: 2016 IEEE 21st International Conference on Emerging Technologies and Factory Automation (ETFA

    Validating Intelligent Power and Energy Systems { A Discussion of Educational Needs

    Get PDF
    Traditional power systems education and training is flanked by the demand for coping with the rising complexity of energy systems, like the integration of renewable and distributed generation, communication, control and information technology. A broad understanding of these topics by the current/future researchers and engineers is becoming more and more necessary. This paper identifies educational and training needs addressing the higher complexity of intelligent energy systems. Education needs and requirements are discussed, such as the development of systems-oriented skills and cross-disciplinary learning. Education and training possibilities and necessary tools are described focusing on classroom but also on laboratory-based learning methods. In this context, experiences of using notebooks, co-simulation approaches, hardware-in-the-loop methods and remote labs experiments are discussed.Comment: 8th International Conference on Industrial Applications of Holonic and Multi-Agent Systems (HoloMAS 2017

    Simulation-based validation of smart grids – Status quo and future research trends

    Get PDF
    Smart grid systems are characterized by high complexity due to interactions between a traditional passive network and active power electronic components, coupled using communication links. Additionally, automation and information technology plays an important role in order to operate and optimize such cyber-physical energy systems with a high(er) penetration of fluctuating renewable generation and controllable loads. As a result of these developments the validation on the system level becomes much more important during the whole engineering and deployment process, today. In earlier development stages and for larger system configurations laboratory-based testing is not always an option. Due to recent developments, simulation-based approaches are now an appropriate tool to support the development, implementation, and roll-out of smart grid solutions. This paper discusses the current state of simulation-based approaches and outlines the necessary future research and development directions in the domain of power and energy systems. © Springer International Publishing AG 2017acceptedVersio

    D-JRA2.1 Simulator coupling and Smart Grid libraries

    No full text
    Work package JRA2 focuses on the development of advanced simulation-based methods to checkand validate smart grid scenarios, configurations and corresponding applications. The main aim isto employ offline simulation of scenarios where a combination of parallel processing, advanced optimization techniques, and design-of-experiments is used to master the system complexity. Secondary targets include the development of methods for HIL application as well as for the assessment of cyber-security concepts. This assessment will cover the following smart grid properties:system stability, system scalability, component interoperability, and information security. Eventuallyit is the goal to explore the operational limits and the sensitivity of these system properties towardssystem parameters.Intelligent Electrical Power Grid
    corecore