65 research outputs found

    Internal Ca2+ release in yeast is triggered by hypertonic shock and mediated by a TRP channel homologue

    Get PDF
    Calcium ions, present inside all eukaryotic cells, are important second messengers in the transduction of biological signals. In mammalian cells, the release of Ca2+ from intracellular compartments is required for signaling and involves the regulated opening of ryanodine and inositol-1,4,5-trisphosphate (IP3) receptors. However, in budding yeast, no signaling pathway has been shown to involve Ca2+ release from internal stores, and no homologues of ryanodine or IP3 receptors exist in the genome. Here we show that hyperosmotic shock provokes a transient increase in cytosolic Ca2+ in vivo. Vacuolar Ca2+, which is the major intracellular Ca2+ store in yeast, is required for this response, whereas extracellular Ca2+ is not. We aimed to identify the channel responsible for this regulated vacuolar Ca2+ release. Here we report that Yvc1p, a vacuolar membrane protein with homology to transient receptor potential (TRP) channels, mediates the hyperosmolarity induced Ca2+ release. After this release, low cytosolic Ca2+ is restored and vacuolar Ca2+ is replenished through the activity of Vcx1p, a Ca2+/H+ exchanger. These studies reveal a novel mechanism of internal Ca2+ release and establish a new function for TRP channels

    Calcineurin-dependent nuclear import of the transcription factor Crz1p requires Nmd5p

    Get PDF
    Calcineurin is a conserved Ca2+/calmodulin-specific serine-threonine protein phosphatase that mediates many Ca2+-dependent signaling events. In yeast, calcineurin dephosphorylates Crz1p, a transcription factor that binds to the calcineurin-dependent response element, a 24-bp promoter element. Calcineurin-dependent dephosphorylation of Crz1p alters Crz1p nuclear localization. This study examines the mechanism by which calcineurin regulates the nuclear localization of Crz1p in more detail. We describe the identification and characterization of a novel nuclear localization sequence (NLS) in Crz1p, which requires both basic and hydrophobic residues for activity, and show that the karyopherin Nmd5p is required for Crz1p nuclear import. We also demonstrate that the binding of Crz1p to Nmd5p is dependent upon its phosphorylation state, indicating that nuclear import of Crz1p is regulated by calcineurin. Finally, we demonstrate that residues in both the NH2- and COOH-terminal portions of Crz1p are required for regulated Crz1p binding to Nmd5p, supporting a model of NLS masking for regulating Crz1p nuclear import

    Hcm1 integrates signals from Cdk1 and calcineurin to control cell proliferation

    Get PDF
    Cyclin-dependent kinase (Cdk1) orchestrates progression through the cell cycle by coordinating the activities of cell-cycle regulators. Although phosphatases that oppose Cdk1 are likely to be necessary to establish dynamic phosphorylation, specific phosphatases that target most Cdk1 substrates have not been identified. In budding yeast, the transcription factor Hcm1 activates expression of genes that regulate chromosome segregation and is critical for maintaining genome stability. Previously we found that Hcm1 activity and degradation are stimulated by Cdk1 phosphorylation of distinct clusters of sites. Here we show that, upon exposure to environmental stress, the phosphatase calcineurin inhibits Hcm1 by specifically removing activating phosphorylations and that this regulation is important for cells to delay proliferation when they encounter stress. Our work identifies a mechanism by which proliferative signals from Cdk1 are removed in response to stress and suggests that Hcm1 functions as a rheostat that integrates stimulatory and inhibitory signals to control cell proliferation

    Molecular Analysis Reveals Localization of Saccharomyces cerevisiae Protein Kinase C to Sites of Polarized Growth and Pkc1p Targeting to the Nucleus and Mitotic Spindle

    No full text
    The catalytic activity and intracellular localization of protein kinase C (PKC) are both highly regulated in vivo. This family of kinases contains conserved regulatory motifs, i.e., the C1, C2, and HR1 domains, which target PKC isoforms to specific subcellular compartments and restrict their activity spatially. Saccharomyces cerevisiae contains a single PKC isozyme, Pkc1p, which contains all of the regulatory motifs found in mammalian PKCs. Pkc1p localizes to sites of polarized growth, consistent with its main function in maintaining cell integrity. We dissected the molecular basis of Pkc1p localization by expressing each of its domains individually and in combinations as green fluorescent protein fusions. We find that the Rho1p-binding domains, HR1 and C1, are responsible for targeting Pkc1p to the bud tip and cell periphery, respectively. We demonstrate that Pkc1p activity is required for its normal localization to the bud neck, which also depends on the integrity of the septin ring. In addition, we show for the first time that yeast protein kinase C can accumulate in the nucleus, and we identify a nuclear exit signal as well as nuclear localization signals within the Pkc1p sequence. Thus, we propose that Pkc1p shuttles in and out of the nucleus and consequently has access to nuclear substrates. Surprisingly, we find that deletion of the HR1 domain results in Pkc1p localization to the mitotic spindle and that the C2 domain is responsible for this targeting. This novel nuclear and spindle localization of Pkc1p may provide a molecular explanation for previous observations that suggest a role for Pkc1p in regulating microtubule function
    corecore