120 research outputs found

    Higher order Schrodinger and Hartree-Fock equations

    Full text link
    The domain of validity of the higher-order Schrodinger equations is analyzed for harmonic-oscillator and Coulomb potentials as typical examples. Then the Cauchy theory for higher-order Hartree-Fock equations with bounded and Coulomb potentials is developed. Finally, the existence of associated ground states for the odd-order equations is proved. This renders these quantum equations relevant for physics.Comment: 19 pages, to appear in J. Math. Phy

    Approximation by point potentials in a magnetic field

    Full text link
    We discuss magnetic Schrodinger operators perturbed by measures from the generalized Kato class. Using an explicit Krein-like formula for their resolvent, we prove that these operators can be approximated in the strong resolvent sense by magnetic Schrodinger operators with point potentials. Since the spectral problem of the latter operators is solvable, one in fact gets an alternative way to calculate discrete spectra; we illustrate it by numerical calculations in the case when the potential is supported by a circle.Comment: 16 pages, 2 eps figures, submitted to J. Phys.

    On Singularity formation for the L^2-critical Boson star equation

    Full text link
    We prove a general, non-perturbative result about finite-time blowup solutions for the L2L^2-critical boson star equation itu=Δ+m2u(x1u2)ui\partial_t u = \sqrt{-\Delta+m^2} \, u - (|x|^{-1} \ast |u|^2) u in 3 space dimensions. Under the sole assumption that the solution blows up in H1/2H^{1/2} at finite time, we show that u(t)u(t) has a unique weak limit in L2L^2 and that u(t)2|u(t)|^2 has a unique weak limit in the sense of measures. Moreover, we prove that the limiting measure exhibits minimal mass concentration. A central ingredient used in the proof is a "finite speed of propagation" property, which puts a strong rigidity on the blowup behavior of uu. As the second main result, we prove that any radial finite-time blowup solution uu converges strongly in L2L^2 away from the origin. For radial solutions, this result establishes a large data blowup conjecture for the L2L^2-critical boson star equation, similar to a conjecture which was originally formulated by F. Merle and P. Raphael for the L2L^2-critical nonlinear Schr\"odinger equation in [CMP 253 (2005), 675-704]. We also discuss some extensions of our results to other L2L^2-critical theories of gravitational collapse, in particular to critical Hartree-type equations.Comment: 24 pages. Accepted in Nonlinearit

    Magnetic transport in a straight parabolic channel

    Full text link
    We study a charged two-dimensional particle confined to a straight parabolic-potential channel and exposed to a homogeneous magnetic field under influence of a potential perturbation WW. If WW is bounded and periodic along the channel, a perturbative argument yields the absolute continuity of the bottom of the spectrum. We show it can have any finite number of open gaps provided the confining potential is sufficiently strong. However, if WW depends on the periodic variable only, we prove by Thomas argument that the whole spectrum is absolutely continuous, irrespectively of the size of the perturbation. On the other hand, if WW is small and satisfies a weak localization condition in the the longitudinal direction, we prove by Mourre method that a part of the absolutely continuous spectrum persists

    Rigorous Real-Time Feynman Path Integral for Vector Potentials

    Full text link
    we will show the existence and uniqueness of a real-time, time-sliced Feynman path integral for quantum systems with vector potential. Our formulation of the path integral will be derived on the L2L^2 transition probability amplitude via improper Riemann integrals. Our formulation will hold for vector potential Hamiltonian for which its potential and vector potential each carries at most a finite number of singularities and discontinuities

    Ballistic transport in random magnetic fields with anisotropic long-ranged correlations

    Full text link
    We present exact theoretical results about energetic and dynamic properties of a spinless charged quantum particle on the Euclidean plane subjected to a perpendicular random magnetic field of Gaussian type with non-zero mean. Our results refer to the simplifying but remarkably illuminating limiting case of an infinite correlation length along one direction and a finite but strictly positive correlation length along the perpendicular direction in the plane. They are therefore ``random analogs'' of results first obtained by A. Iwatsuka in 1985 and by J. E. M\"uller in 1992, which are greatly esteemed, in particular for providing a basic understanding of transport properties in certain quasi-two-dimensional semiconductor heterostructures subjected to non-random inhomogeneous magnetic fields

    Selection of the ground state for nonlinear Schroedinger equations

    Full text link
    We prove for a class of nonlinear Schr\"odinger systems (NLS) having two nonlinear bound states that the (generic) large time behavior is characterized by decay of the excited state, asymptotic approach to the nonlinear ground state and dispersive radiation. Our analysis elucidates the mechanism through which initial conditions which are very near the excited state branch evolve into a (nonlinear) ground state, a phenomenon known as {\it ground state selection}. Key steps in the analysis are the introduction of a particular linearization and the derivation of a normal form which reflects the dynamics on all time scales and yields, in particular, nonlinear Master equations. Then, a novel multiple time scale dynamic stability theory is developed. Consequently, we give a detailed description of the asymptotic behavior of the two bound state NLS for all small initial data. The methods are general and can be extended to treat NLS with more than two bound states and more general nonlinearities including those of Hartree-Fock type.Comment: Revision of 2001 preprint; 108 pages Te

    On the AC spectrum of one-dimensional random Schroedinger operators with matrix-valued potentials

    Full text link
    We consider discrete one-dimensional random Schroedinger operators with decaying matrix-valued, independent potentials. We show that if the l^2-norm of this potential has finite expectation value with respect to the product measure then almost surely the Schroedinger operator has an interval of purely absolutely continuous (ac) spectrum. We apply this result to Schroedinger operators on a strip. This work provides a new proof and generalizes a result obtained by Delyon, Simon, and Souillard.Comment: (1 figure

    Are N=1 and N=2 supersymmetric quantum mechanics equivalent?

    Full text link
    After recalling different formulations of the definition of supersymmetric quantum mechanics given in the literature, we discuss the relationships between them in order to provide an answer to the question raised in the title.Comment: 15 page

    Convergence and completeness for square-well Stark resonant state expansions

    Get PDF
    In this paper we investigate the completeness of the Stark resonant eigenstates for a particle in a square-well potential. We find that the resonant state expansions for target functions converge inside the potential well and that the existence of this convergence does not depend on the depth of the potential well. By analyzing the asymptotic form of the terms in these expansions we prove some results on the relation between smoothness of target functions and the rate of convergence of the corresponding resonant state expansion
    corecore