22 research outputs found

    Dengue virus targets RBM10 deregulating host cell splicing and innate immune response

    Get PDF
    © The Author(s) 2020. Published by Oxford University Press on behalf of Nucleic Acids Research. This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact [email protected] experiments previously performed by our laboratories showed enrichment in intronic sequences and alterations in alternative splicing in dengue-infected human cells. The transcript of the SAT1 gene, of well-known antiviral action, displayed higher inclusion of exon 4 in infected cells, leading to an mRNA isoform that is degraded by non-sense mediated decay. SAT1 is a spermidine/spermine acetyl-transferase enzyme that decreases the reservoir of cellular polyamines, limiting viral replication. Delving into the molecular mechanism underlying SAT1 pre-mRNA splicing changes upon viral infection, we observed lower protein levels of RBM10, a splicing factor responsible for SAT1 exon 4 skipping. We found that the dengue polymerase NS5 interacts with RBM10 and its sole expression triggers RBM10 proteasome-mediated degradation. RBM10 over-expression in infected cells prevents SAT1 splicing changes and limits viral replication, while its knock-down enhances the splicing switch and also benefits viral replication, revealing an anti-viral role for RBM10. Consistently, RBM10 depletion attenuates expression of interferon and pro-inflammatory cytokines. In particular, we found that RBM10 interacts with viral RNA and RIG-I, and even promotes the ubiquitination of the latter, a crucial step for its activation. We propose RBM10 fulfills diverse pro-inflammatory, anti-viral tasks, besides its well-documented role in splicing regulation of apoptotic genes.Agencia Nacional de Promoción Científica y Tecnológica de Argentina (ANPCyT) [2014-2888, 2015-1731, 2017-0111 to A.S. and 2015-2555, 2017-1717 to A.V.G.]; Universidad de Buenos Aires, Argentina (UBACyT) [20020170100045BA to A.S.]; NIH (NIAID) [R01.AI095175 to A.V.G.]; Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina (CONICET) [PIP 11220170100171CO to C.C.G]; B.P. has been a postdoctoral fellow from CONICET from 2017 to 2019 and is currently a postdoctoral fellow at the Institute of Cell Biology in the University of Bern, Switzerland; L.B. and M.E.G.S. are recipients of doctoral fellowships from CONICET; M.F.T. is a doctoral fellowship recipient from ANPCyT; N.G. has been an undergraduate fellowship recipient from the University of Buenos Aires (2018–2020); P.M. has been a doctoral fellow from CONICET (2015–2019) and is currently a postdoctoral fellow supported by H2020-Marie Sklodowska-Curie Research and Innovation Staff Exchanges [734825-LysoMod]; R.V.D. has been a visiting post-doctoral fellow at the Srebrow lab from IMM (Lisbon, Portugal) supported by the same program. A.S., A.V.G., C.C.G., N.G.I. and L.G.G. are career investigators from CONICET.info:eu-repo/semantics/publishedVersio

    Antibody-based inhibition of pathogenic new world hemorrhagic fever mammarenaviruses by steric occlusion of the human transferrin receptor 1 apical domain

    Get PDF
    Pathogenic clade B New World mammarenaviruses (NWM) can cause Argentine, Venezuelan, Brazilian, and Bolivian hemorrhagic fevers. Sequence variability among NWM glycoproteins (GP) poses a challenge to the development of broadly neutralizing therapeutics against the entire clade of viruses. However, blockade of their shared binding site on the apical domain of human transferrin receptor 1 (hTfR1/CD71) presents an opportunity for the development of effective and broadly neutralizing therapeutics. Here, we demonstrate that the murine monoclonal antibody OKT9, which targets the apical domain of hTfR1, can sterically block cellular entry by viral particles presenting clade B NWM glycoproteins (GP1-GP2). OKT9 blockade is also effective against viral particles pseudotyped with glycoproteins of a recently identified pathogenic Sabia-like virus. With nanomolar affinity for hTfR1, the OKT9 antigen binding fragment (OKT9-Fab) sterically blocks clade B NWM-GP1s and reduces infectivity of an attenuated strain of Junin virus. Binding of OKT9 to the hTfR1 ectodomain in its soluble, dimeric state produces stable assemblies that are observable by negative-stain electron microscopy. A model of the OKT9-sTfR1 complex, informed by the known crystallographic structure of sTfR1 and a newly determined structure of the OKT9 antigen binding fragment (Fab), suggests that OKT9 and the Machupo virus GP1 share a binding site on the hTfR1 apical domain. The structural basis for this interaction presents a framework for the design and development of high-affinity, broadly acting agents targeting clade B NWMs. IMPORTANCE Pathogenic clade B NWMs cause grave infectious diseases, the South American hemorrhagic fevers. Their etiological agents are Junin (JUNV), Guanarito (GTOV), Sabiá (SABV), Machupo (MACV), Chapare (CHAV), and a new Sabiá-like (SABV-L) virus recently identified in Brazil. These are priority A pathogens due to their high infectivity and mortality, their potential for person-to-person transmission, and the limited availability of effective therapeutics and vaccines to curb their effects. While low homology between surface glycoproteins of NWMs foils efforts to develop broadly neutralizing therapies targeting NWMs, this work provides structural evidence that OKT9, a monoclonal antibody targeting a single NWM glycoprotein binding site on hTfR1, can efficiently prevent their entry into cells.Fil: Ferrero, Sol. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Flores, Maria D.. University of California at Los Angeles; Estados UnidosFil: Short, Connor. University of California at Los Angeles; Estados UnidosFil: Vázquez, Cecilia Alejandra. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Clark, Lars E.. Harvard Medical School; Estados UnidosFil: Ziegenbein, James. University of California at Los Angeles; Estados UnidosFil: Zink, Samantha. University of California at Los Angeles; Estados UnidosFil: Fuentes, Daniel. University of California at Los Angeles; Estados UnidosFil: Payés, Cristian. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Batto, María V.. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Collazo, Michael. University of California at Los Angeles; Estados UnidosFil: García, Cybele C.. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Abraham, Jonathan. Harvard Medical School; Estados Unidos. Brigham and Women's Hospital; Estados UnidosFil: Cordo, Sandra Myriam. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Rodriguez, Jose A.. University of California at Los Angeles; Estados UnidosFil: Helguera, Gustavo Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; Argentin

    De novo design approaches targeting an envelope protein pocket to identify small molecules against dengue virus

    Get PDF
    Dengue fever is a mosquito-borne viral disease that has become a major public health concern worldwide. This disease presents with a wide range of clinical manifestations, from a mild cold-like illness to the more serious hemorrhagic dengue fever and dengue shock syndrome. Currently, neither an approved drug nor an effective vaccine for the treatment are available to fight the disease. The envelope protein (E) is a major component of the virion surface. This protein plays a key role during the viral entry process, constituting an attractive target for the development of antiviral drugs. The crystal structure of the E protein reveals the existence of a hydrophobic pocket occupied by the detergent n-octyl-β-d-glucoside (β-OG). This pocket lies at the hinge region between domains I and II and is important for the low pH-triggered conformational rearrangement required for the fusion of the virion with the host's cell. Aiming at the design of novel molecules which bind to E and act as virus entry inhibitors, we undertook a de novo design approach by “growing” molecules inside the hydrophobic site (β-OG). From more than 240000 small-molecules generated, the 2,4 pyrimidine scaffold was selected as the best candidate, from which one synthesized compound displayed micromolar activity. Molecular dynamics-based optimization was performed on this hit, and thirty derivatives were designed in silico, synthesized and evaluated on their capacity to inhibit dengue virus entry into the host cell. Four compounds were found to be potent antiviral compounds in the low-micromolar range. The assessment of drug-like physicochemical and in vitro pharmacokinetic properties revealed that compounds 3e and 3h presented acceptable solubility values and were stable in mouse plasma, simulated gastric fluid, simulated intestinal fluid, and phosphate buffered saline solution.Fil: Leal, Emilse Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Investigaciones en Bionanociencias "Elizabeth Jares Erijman"; ArgentinaFil: Adler, Natalia Sol. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Investigaciones en Bionanociencias "Elizabeth Jares Erijman"; Argentina. Universidad Austral. Facultad de Ciencias Biomédicas. Instituto de Investigaciones en Medicina Traslacional. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones en Medicina Traslacional; ArgentinaFil: Fernandez, Gabriela Araceli. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Investigaciones en Bionanociencias "Elizabeth Jares Erijman"; ArgentinaFil: Gebhard, Leopoldo German. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Battini, Leandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Investigaciones en Bionanociencias "Elizabeth Jares Erijman"; ArgentinaFil: Aucar, María Gabriela. Universidad Austral. Facultad de Ciencias Biomédicas. Instituto de Investigaciones en Medicina Traslacional. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones en Medicina Traslacional; ArgentinaFil: Videla, Mariela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Investigaciones en Bionanociencias "Elizabeth Jares Erijman"; ArgentinaFil: Monge, Maria Eugenia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Investigaciones en Bionanociencias "Elizabeth Jares Erijman"; ArgentinaFil: Hernández de los Ríos, Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Acosta Dávila, John. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Morell, María L.. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Cordo, Sandra Myriam. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; ArgentinaFil: García, Cybele C.. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Gamarnik, Andrea Vanesa. Fundación Instituto Leloir; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Cavasotto, Claudio Norberto. Universidad Austral. Facultad de Ciencias Biomédicas. Instituto de Investigaciones en Medicina Traslacional. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones en Medicina Traslacional; Argentina. Universidad Austral; ArgentinaFil: Bollini, Mariela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Investigaciones en Bionanociencias "Elizabeth Jares Erijman"; Argentin

    Inhibition of arenavirus infection by thiuram and aromatic disulfides

    No full text
    A selected group of aromatic disulfides, thiuram disulfides and thiosulfones, provided by the National Cancer Institute, were evaluated in vitro for their inhibitory activity against Junin virus (JUNV), the causative agent of Argentine hemorrhagic fever. The aromatic disulfides NSC4492 and NSC71033 and the thiuram disulfide NSC14560 were, respectively, the more potent virucidal and antiviral agents against JUNV, with inactivating concentration 50% (IC50) values of 0.2-0.5μM for virucidal compounds and antiviral effective concentration 50% (EC50) of 8.5μM for NSC14560. Both types of compounds exhibited inhibitory activity against three arenaviruses. Additionally, a comparable efficacy in the antiviral action of NSC14560 was observed in monkey, hamster or human cells with selectivity indices in the range 55.9-85.7. Time of addition experiments showed that the main antiviral activity of NSC14560 was situated before 5h of infection, but a significant inhibition was still observed when the compound was added up 9h p.i. This compound did not induce a refractory state to infection by cell pretreatment. Nor did it prevent viral entry, but the cytoplasmic and membrane expression of the main viral proteins was inhibited. The possible involvement of the RING finger motif of arenavirus Z protein as target for the thiuram disulfide is discussed.Fil: Sepúlveda, Claudia Soledad. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica. Laboratorio de Virología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay; ArgentinaFil: García, Cybele C.. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica. Laboratorio de Virología; ArgentinaFil: Damonte, Elsa Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica. Laboratorio de Virología; Argentin

    Primer sequences used for real-time RT-PCR assays.

    No full text
    <p>Primer sequences used for real-time RT-PCR assays.</p

    Determination of PML expression with the time of infection.

    No full text
    <p>(A) A549 cells were infected with DENV-2 (MOI = 1) and at 2, 4, 16 and 24 h p.i. the expression of PML-mRNA was determined by qRT-PCR. (B) A549 cells were infected with DENV-2 (MOI = 1) and at 2, 4, 18 and 48 h p.i. the expression of PML was revealed by immunofluorescence with anti-PML monoclonal antibodies. Magnification: 400X.</p

    Assessment of PML silencing and overexpression in A549 cells.

    No full text
    <p>A549 cells were non-transfected, transfected with X-siRNAs, PML-siRNAs or pcDNA-PMLIV. (A) At 24 h post transfection, cells were fixed and PML protein was stained using anti-PML monoclonal antibody and TRITC-labeled anti-mouse IgG. Cells were visualized by fluorescence microscopy. Magnification: 400 X. (B) In parallel, cells were harvested for determination of PML-mRNA expression levels by real time PCR. PML-mRNA expression level is represented as fold difference relative to X-siRNAs-transfected cells and normalized to β-actin-mRNA. The reported values are mean ± SD (n = 3). Asterisks indicate a significant difference (*** p < 0.001; ** p < 0.01; * p < 0.05). (C) Counts of apoptotic cells and apoptotic bodies were performed using 400 X magnification. All identified apoptosis in the sample were counted and the % of apoptotic cells was defined as the total number of apoptotic cells and apoptotic bodies in at least 500 cells.</p

    Effect of PML silencing and overexpression on infectious particle production and antigen expression.

    No full text
    <p>A549 cells were non-transfected, transfected with X-siRNAs, PML-siRNAs or pcDNA-PMLIV and infected with DENV-2. Non-infected cells were also included as a control (A) At 24 h p.i. viral yields were determined by a standard plaque assay. The reported values are mean ± SD (n = 3). Asterisks indicate a significant difference (*** p < 0.001; ** p < 0.01; * p < 0.05). (B) In parallel, cells were fixed at 24 h p.i. and viral glycoprotein E was stained using anti-E monoclonal antibody and FITC-labeled anti-mouse IgG2a. Cells were visualized by fluorescence microscopy. Magnification: 400 X. (C) Quantification of DENV-2 antigen expressing cells shown in B.</p
    corecore