438 research outputs found

    Universality in Complex Networks: Random Matrix Analysis

    Get PDF
    We apply random matrix theory to complex networks. We show that nearest neighbor spacing distribution of the eigenvalues of the adjacency matrices of various model networks, namely scale-free, small-world and random networks follow universal Gaussian orthogonal ensemble statistics of random matrix theory. Secondly we show an analogy between the onset of small-world behavior, quantified by the structural properties of networks, and the transition from Poisson to Gaussian orthogonal ensemble statistics, quantified by Brody parameter characterizing a spectral property. We also present our analysis for a protein-protein interaction network in budding yeast.Comment: 4+ pages, 4 figures, to appear in PRE, major change in the paper including titl

    Note on Branching

    Get PDF
    It has been demonstrated that the spectrum of the molecular graph contains information about the extent of branching of the molecular skeleton. In particular, the largest eigenvalue, xi, in the spectrum has been shown to be closely related to the total number of walks in the graph (eqs. (11) and (15)). Thus, a justification of the recent empirical finding that x1 is a measure of branching9,in has been obtained

    Spectral Analysis of Protein-Protein Interactions in Drosophila melanogaster

    Full text link
    Within a case study on the protein-protein interaction network (PIN) of Drosophila melanogaster we investigate the relation between the network's spectral properties and its structural features such as the prevalence of specific subgraphs or duplicate nodes as a result of its evolutionary history. The discrete part of the spectral density shows fingerprints of the PIN's topological features including a preference for loop structures. Duplicate nodes are another prominent feature of PINs and we discuss their representation in the PIN's spectrum as well as their biological implications.Comment: 9 pages RevTeX including 8 figure

    The problem of deficiency indices for discrete Schr\"odinger operators on locally finite graphs

    Full text link
    The number of self-adjoint extensions of a symmetric operator acting on a complex Hilbert space is characterized by its deficiency indices. Given a locally finite unoriented simple tree, we prove that the deficiency indices of any discrete Schr\"odinger operator are either null or infinite. We also prove that almost surely, there is a tree such that all discrete Schr\"odinger operators are essentially self-adjoint. Furthermore, we provide several criteria of essential self-adjointness. We also adress some importance to the case of the adjacency matrix and conjecture that, given a locally finite unoriented simple graph, its the deficiency indices are either null or infinite. Besides that, we consider some generalizations of trees and weighted graphs.Comment: Typos corrected. References and ToC added. Paper slightly reorganized. Section 3.2, about the diagonalization has been much improved. The older section about the stability of the deficiency indices in now in appendix. To appear in Journal of Mathematical Physic

    Quantum transport on small-world networks: A continuous-time quantum walk approach

    Full text link
    We consider the quantum mechanical transport of (coherent) excitons on small-world networks (SWN). The SWN are build from a one-dimensional ring of N nodes by randomly introducing B additional bonds between them. The exciton dynamics is modeled by continuous-time quantum walks and we evaluate numerically the ensemble averaged transition probability to reach any node of the network from the initially excited one. For sufficiently large B we find that the quantum mechanical transport through the SWN is, first, very fast, given that the limiting value of the transition probability is reached very quickly; second, that the transport does not lead to equipartition, given that on average the exciton is most likely to be found at the initial node.Comment: 8 pages, 8 figures (high quality figures available upon request

    Spectral analysis of deformed random networks

    Full text link
    We study spectral behavior of sparsely connected random networks under the random matrix framework. Sub-networks without any connection among them form a network having perfect community structure. As connections among the sub-networks are introduced, the spacing distribution shows a transition from the Poisson statistics to the Gaussian orthogonal ensemble statistics of random matrix theory. The eigenvalue density distribution shows a transition to the Wigner's semicircular behavior for a completely deformed network. The range for which spectral rigidity, measured by the Dyson-Mehta Δ3\Delta_3 statistics, follows the Gaussian orthogonal ensemble statistics depends upon the deformation of the network from the perfect community structure. The spacing distribution is particularly useful to track very slight deformations of the network from a perfect community structure, whereas the density distribution and the Δ3\Delta_3 statistics remain identical to the undeformed network. On the other hand the Δ3\Delta_3 statistics is useful for the larger deformation strengths. Finally, we analyze the spectrum of a protein-protein interaction network for Helicobacter, and compare the spectral behavior with those of the model networks.Comment: accepted for publication in Phys. Rev. E (replaced with the final version

    Enhancing the spectral gap of networks by node removal

    Full text link
    Dynamics on networks are often characterized by the second smallest eigenvalue of the Laplacian matrix of the network, which is called the spectral gap. Examples include the threshold coupling strength for synchronization and the relaxation time of a random walk. A large spectral gap is usually associated with high network performance, such as facilitated synchronization and rapid convergence. In this study, we seek to enhance the spectral gap of undirected and unweighted networks by removing nodes because, practically, the removal of nodes often costs less than the addition of nodes, addition of links, and rewiring of links. In particular, we develop a perturbative method to achieve this goal. The proposed method realizes better performance than other heuristic methods on various model and real networks. The spectral gap increases as we remove up to half the nodes in most of these networks.Comment: 5 figure

    Random matrix analysis of complex networks

    Full text link
    We study complex networks under random matrix theory (RMT) framework. Using nearest-neighbor and next-nearest-neighbor spacing distributions we analyze the eigenvalues of adjacency matrix of various model networks, namely, random, scale-free and small-world networks. These distributions follow Gaussian orthogonal ensemble statistic of RMT. To probe long-range correlations in the eigenvalues we study spectral rigidity via Δ3\Delta_3 statistic of RMT as well. It follows RMT prediction of linear behavior in semi-logarithmic scale with slope being 1/π2\sim 1/\pi^2. Random and scale-free networks follow RMT prediction for very large scale. Small-world network follows it for sufficiently large scale, but much less than the random and scale-free networks.Comment: accepted in Phys. Rev. E (replaced with the final version

    Spectral Measures of Bipartivity in Complex Networks

    Full text link
    We introduce a quantitative measure of network bipartivity as a proportion of even to total number of closed walks in the network. Spectral graph theory is used to quantify how close to bipartite a network is and the extent to which individual nodes and edges contribute to the global network bipartivity. It is shown that the bipartivity characterizes the network structure and can be related to the efficiency of semantic or communication networks, trophic interactions in food webs, construction principles in metabolic networks, or communities in social networks.Comment: 16 pages, 1 figure, 1 tabl

    Unsupervised online activity discovery using temporal behaviour assumption

    Get PDF
    We present a novel unsupervised approach, UnADevs, for discovering activity clusters corresponding to periodic and stationary activities in streaming sensor data. Such activities usually last for some time, which is exploited by our method; it includes mechanisms to regulate sensitivity to brief outliers and can discover multiple clusters overlapping in time to better deal with deviations from nominal behaviour. The method was evaluated on two activity datasets containing large number of activities (14 and 33 respectively) against online agglomerative clustering and DBSCAN. In a multi-criteria evaluation, our approach achieved significantly better performance on majority of the measures, with the advantages that: (i) it does not require to specify the number of clusters beforehand (it is open ended); (ii) it is online and can find clusters in real time; (iii) it has constant time complexity; (iv) and it is memory efficient as it does not keep the data samples in memory. Overall, it has managed to discover 616 of the total 717 activities. Because it discovers clusters of activities in real time, it is ideal to work alongside an active learning system
    corecore