6 research outputs found

    The role of community energy systems to facilitate energy transitions in Ethiopia and Mozambique

    Get PDF
    Policymakers and academics are focusing on energy transition to provide affordable, sustainable, and green energy for everyone. This is being driven by a combination of the lack of electricity access to millions of people particularly in the African continent and the requirement for the reduction of environmental impact through the use of greener energy resources and systems. This paper summarizes an interdisciplinary research program investigating community energy systems in Ethiopia and Mozambique to facilitate energy transitions. Specifically, it compares community energy landscapes, progress made, and existing challenges and opportunities. To determine the status of community energy development in the two countries, recent publications and official policies were reviewed, and community energy managers were interviewed. The review showed that renewable energy sources are the dominant focus for community energy developments, which is key to achieving a cleaner energy future. However, progress in community energy development has been slow in these countries. There are several reasons that hinder community energy systems from driving the necessary energy transition to a cleaner, modern, and affordable energy. Some of these reasons are the absence of favorable regulatory frameworks, incentive package, knowledge on business models, weak commitments from stakeholders, and insufficient community involvement. These issues vary in degree between the two countries

    Delivering an off-grid transition to sustainable energy in Ethiopia and Mozambique

    Get PDF
    Background: Off-grid and decentralized energy systems have emerged as an alternative to facilitate energy access and resilience in a flexible, adaptable way, particularly for communities that do not have reliable access to centralized energy networks both in rural and urban areas. Much research to date on community energy systems has focused on their deployment in Europe and North America. This paper advances these debates by looking at how community energy systems can support energy transitions in Africa. Specifically, it asks: what role can community energy systems play in the energy transition in East and Southern Africa? Results: This article investigates the potential for community energy to foster sustainable and just energy transitions in two countries in East and Southern Africa, namely Ethiopia and Mozambique. To do so, it explores transformations in Ethiopia and Mozambique’s energy systems through the lens of energy landscapes. This concept enables us to situate energy transitions within recent developments in energy governance and to understand current and future possibilities for change through the involvement of communities that currently lack access to reliable and clean energy. Our results show that when countries face the prospects of lucrative energy investments in natural gas or large hydropower, renewables are often deprioritized. Their suitability to address energy challenges and access gaps is de-emphasized, even though there is little evidence that investment in large-scale generation can handle the energy needs of the most disadvantaged groups. Initiatives and policies supporting community-focused renewable energy have remained limited in both countries. They tend to be designed from the top-down and focused on rural areas when they exist. Conclusions: Energy transitions in Ethiopia and Mozambique, and many other countries with significant gaps in access to centralized energy systems, require putting inclusivity at the forefront to ensure that energy policies and infrastructure support the well-being of society as a whole. As long as investments in off-grid energy continue to depend on international organizations’ goodwill or development aid programs outside the ambit of national energy plans, energy access gaps will remain unaddressed, and there will not be a genuine and just transition to sustainable energy

    Mild Wet Torrefaction and Characterization of Woody Biomass from Mozambique for Thermal Applications

    No full text
    Mozambique has vast forestry resources and also considerable biomass waste material such as bagasse, rice husks, sawdust, coconut husks and shells, cashew nut shell and lump charcoal waste. The potential of the total residues from the agricultural sector and the forest industry is estimated to be approximately 13 PJ. This amount of energy covers totally the production of charcoal which amounted to approximately 12.7 PJ in 2006. Although biomass is an attractive renewable source of energy, it is generally difficult to handle, transport, storage and use due to its lower homogeneity, its lower energy density and the presence of non-combustible inorganic constituents, which leads to different problems in energy conversion units such as deposition, sintering, agglomeration, fouling and corrosion. Therefore, a pretreatment of the biomass to solve these problems could lead to a change of current biomass utilization situation. The aim of this study is to convert Mozambican woody biomass residue into a solid biochar that resembles low-grade coal. In this work the current energy situation in Mozambique has been reviewed, and the available and potential renewable sources including residues from agricultural crops and forest industry as energy have been assessed. It was found that the country is endowed with great potential for biofuel, solar, hydro and wind energy production. However, the production today is still far from fulfilling the energy needs of the country, and the majority of people are still not benefiting from these resources. Charcoal and firewood are still the main sources of energy and will continue to play a very important role in the near future. Additionally, enormous amounts of energy resources are wasted, especially in the agricultural sector. These residues are not visible on national energy statistics. The chemical composition and the fuelwood value index (FVI) showed that by failing to efficiently utilise residues from Afzelia quanzensis, Millettia stuhlmannii and Pterocarpus angolensis, an opportunity to reduce some of the energy related problems is missed. An evaluation of effect of a mild wet torrefaction pretreatment showed that the chemical composition of the biochar is substantially different than the feedstock. The use of diluted acid as catalysts improves the biochar quality, namely in terms of the energy density and ash characteristics; however, the increment of the S content in the final product should be considered for market acceptance (because the fuels have a maximum allowance for S concentration). The thermal behaviour of the untreated and treated biomass was also investigated. The pyrolytic products of umbila and spruce were affected by the treatment and catalyst in terms of yield and composition of the vapours.QC 20150202</p

    The Impact of a Mild Sub-Critical Hydrothermal Carbonization Pretreatment on Umbila Wood. A Mass and Energy Balance Perspective

    No full text
    Over the last years, the pretreatment of biomass as a source of energy has become one of the most important steps of biomass conversion. In this work the effect of a mild subcritical hydrothermal carbonization of a tropical woody biomass was studied. Results indicate considerable change in carbon content from 52.78% to 65.1%, reduction of oxygen content from 41.14% to 28.72% and ash slagging and fouling potential. Even though decarboxylation, decarbonylation and dehydration reactions take place, dehydration is the one that prevails. The mass and energy balance was affected by the treatment conditions than the severity of the treatment

    Delivering an off-grid transition to sustainable energy in Ethiopia and Mozambique

    Get PDF
    Off-grid and decentralized energy systems have emerged as an alternative to facilitate energy access and resilience in a flexible, adaptable way, particularly for communities that do not have reliable access to centralized energy networks both in rural and urban areas. Much research to date on community energy systems has focused on their deployment in Europe and North America. This paper advances these debates by looking at how community energy systems can support energy transitions in Africa. Specifically, it asks: what role can community energy systems play in the energy transition in East and Southern Africa

    Delivering an off-grid transition to sustainable energy in Ethiopia and Mozambique

    No full text
    Background: Off-grid and decentralized energy systems have emerged as an alternative to facilitate energy access and resilience in a flexible, adaptable way, particularly for communities that do not have reliable access to centralized energy networks both in rural and urban areas. Much research to date on community energy systems has focused on their deployment in Europe and North America. This paper advances these debates by looking at how community energy systems can support energy transitions in Africa. Specifically, it asks: what role can community energy systems play in the energy transition in East and Southern Africa? Results: This article investigates the potential for community energy to foster sustainable and just energy transitions in two countries in East and Southern Africa, namely Ethiopia and Mozambique. To do so, it explores transformations in Ethiopia and Mozambique’s energy systems through the lens of energy landscapes. This concept enables us to situate energy transitions within recent developments in energy governance and to understand current and future possibilities for change through the involvement of communities that currently lack access to reliable and clean energy. Our results show that when countries face the prospects of lucrative energy investments in natural gas or large hydropower, renewables are often deprioritized. Their suitability to address energy challenges and access gaps is de-emphasized, even though there is little evidence that investment in large-scale generation can handle the energy needs of the most disadvantaged groups. Initiatives and policies supporting community-focused renewable energy have remained limited in both countries. They tend to be designed from the top-down and focused on rural areas when they exist. Conclusions: Energy transitions in Ethiopia and Mozambique, and many other countries with significant gaps in access to centralized energy systems, require putting inclusivity at the forefront to ensure that energy policies and infrastructure support the well-being of society as a whole. As long as investments in off-grid energy continue to depend on international organizations’ goodwill or development aid programs outside the ambit of national energy plans, energy access gaps will remain unaddressed, and there will not be a genuine and just transition to sustainable energy
    corecore