131 research outputs found

    Fetiform teratoma in an Italian-Fresian calf: case report and literature review.

    Get PDF
    Introduction. Fetiform teratoma is a rare form of teratoma in animals and people that resembles a malformed fetus. This paper describes the first case of highly differentiated extragonadal fetiform teratoma with cranial connection in an Italian-Friesian calf. Case presentation. A 35-day-old male Italian-Friesian calf weighing 55 kg was referred because of a mass localized in the fronto-nasal region. The mass contained two lateral structures of similar size and conformation that were recognized as underdeveloped hind limbs, while at its center there was a small tail. The mass was surgically excised and sent to the pathologist for examination. Gross examination identified two femur-like rudimentary limbs and a sketch of bone located in between, morphologically referable to a rudimentary coxae-like bo ne. Some mucinous cysts, a virtual body cavity showing adipose and muscular tissues, some cartilaginous nuclei and a coelomatic body cavity were also noted. Histological examination showed differentiation into skin with dermal appendages, hair, adipose tissue, cartilage, bone, lymphoid tissue, neurovascular bundles, and a rudimentary tail. No neural tissue including spinal cord, brain matter, or gonadal differentiation was seen. On the basis of these findings, the mass was diagnosed as a highly differentiated extragonadal fetiform teratoma. Conclusion. Fetiform teratoma should be included among differential diagnoses in cases of neonatal malformation in bovine. Analyzing the available literature, the Friesian genetic strain seem to be predisposed to fetal malformation, but a systematic reporting of cases is needed, in order to investigate further the epidemiological, etiological, pathophysiological and therapeutic aspect of this kind of congenital disease

    Sensitivity of HTB140 cell exposed to protons and alkylating agents

    Get PDF
    Malignant melanoma is a highly aggressive cancer with a poor prognosis due to resistance to radiotherapy and chemotherapy regimens. The mainstay of treatment remains DNA-alkylatingagent dacarbazine (DTIC). Fotemustine (FM), chloroethylnitrosourea agent, also has demonstrated significant antitumoral effects in malignantmelanoma. However, the resistance of melanoma cells limits their clinical application. In order to enhance the inhibition of melanoma cell growth, in this study, combined treatment of FM and DTIC with proton irradiation, was investigated. We analyzed the effects of combined treatment on HTB140 melanoma cell viability and proliferation. Significant inhibition of cell growth, especially cell proliferation, was obtained after treatment with protons and FM compare to single irradiation or drug treatment. Treatment with protons and DTIC has shown improved growth inhibition compare to appropriate single drug treatment, but not compare to irradiation as a single treatment.Physical chemistry 2006 : 8th international conference on fundamental and applied aspects of physical chemistry; Belgrade (Serbia); 26-29 September 200

    Radiobiological studies on the 62 MeV therapeutic proton beam at lns catania: I. survival of HTB140 melanoma cells

    Get PDF
    The aim of this study was to determine the initial inactivation of cells induced by high-energy proton beam designed for the treatment of eye melanoma. Exponentially growing HTB140 cells were exposed to an unmodulated 62 MeV proton beam delivered over the single dose range from 8 Gy to 24 Gy. Position of samples was in the zone of the Bragg peak, having high LET values. Surviving fractions were evaluated at 6, 24 and 48 h post-irradiation. The survival curves exhibited a well-known shoulder, decreasing for doses higher than 8 Gy. Therefore, a significant dose dependent early cell inactivation after single delivery of 16 Gy to 24 Gy to the cell monolayer was observed. With the increase of the post-irradiation incubation time, a better killing effect, as the consequence of clonogenic survival, was detected.Physical chemistry 2004 : 7th international conference on fundamental and applied aspects of physical chemistry; Belgrade (Serbia); 21-23 September 200

    Radiobiological studies on the 62 MeV therapeutic proton beam at lns catania: II. facs analyses of HTB140 melanoma cells

    Get PDF
    The objective of this study was to determine whether apoptosis and cell cycle redistribution were influenced by high-LET irradiation. Exponentially growing HTB140 cells were exposed to an unmodulated 62 MeV proton beam, within the Bragg peak, delivered over the single dose range from 8 Gy to 24 Gy. At 6 h post-irradiation, there was a low level of early apoptosis. At 48 h irradiated cells were more damaged, showing the increase in number of apoptotic nuclei. The dose dependent cell cycle phase distribution was detected at 48 h post-irradiation. The cell population exhibited phase redistribution toward G2/M phase.Physical chemistry 2004 : 7th international conference on fundamental and applied aspects of physical chemistry; Belgrade (Serbia); 21-23 September 200

    Response of Human HTB140 Melanoma Cells to Conventional Radiation and Hadrons

    Get PDF
    Conventional radiotherapy with X-and gamma-rays is one of the common and effective treatments of cancer. High energy hadrons, i.e., charged particles like protons and (12)C ions, due to their specific physics and radiobiological advantages are increasingly used. In this study, effectiveness of different radiation types is evaluated on the radio-resistant human HTB140 melanoma cells. The cells were irradiated with gamma-rays, the 62 MeV protons at the Bragg peak and in the middle of the spread-out Bragg peak (SOBP), as well as with the 62 MeV/u (12)C ions. The doses ranged from 2 to 24 Gy. Cell survival and proliferation were assessed 7 days after irradiation, whereas apoptosis was evaluated after 48 h. The acquired results confirmed the high radio-resistance of cells, showing better effectiveness of protons than gamma-rays. The best efficiency was obtained with (12)C ions due to higher linear energy transfer. All analyzed radiation qualities reduced cell proliferation. The highest proliferation was detected for (12)C ions because of their large killing capacity followed by small induction of reparable lesions. This enabled unharmed cells to preserve proliferative activity. Irradiations with protons and (12)C ions revealed similar moderate pro-apoptotic ability that is in agreement with the level of cellular radio-resistance

    Response of Human HTB140 Melanoma Cells to Conventional Radiation and Hadrons

    Get PDF
    Conventional radiotherapy with X-and gamma-rays is one of the common and effective treatments of cancer. High energy hadrons, i.e., charged particles like protons and (12)C ions, due to their specific physics and radiobiological advantages are increasingly used. In this study, effectiveness of different radiation types is evaluated on the radio-resistant human HTB140 melanoma cells. The cells were irradiated with gamma-rays, the 62 MeV protons at the Bragg peak and in the middle of the spread-out Bragg peak (SOBP), as well as with the 62 MeV/u (12)C ions. The doses ranged from 2 to 24 Gy. Cell survival and proliferation were assessed 7 days after irradiation, whereas apoptosis was evaluated after 48 h. The acquired results confirmed the high radio-resistance of cells, showing better effectiveness of protons than gamma-rays. The best efficiency was obtained with (12)C ions due to higher linear energy transfer. All analyzed radiation qualities reduced cell proliferation. The highest proliferation was detected for (12)C ions because of their large killing capacity followed by small induction of reparable lesions. This enabled unharmed cells to preserve proliferative activity. Irradiations with protons and (12)C ions revealed similar moderate pro-apoptotic ability that is in agreement with the level of cellular radio-resistance

    Carbon ions of different linear energy transfer (LET) values induce apoptosis & G2 cell cycle arrest in radio-resistant melanoma cells

    Get PDF
    © 2016, Indian Council of Medical Research. All rights reserved. Background & objectives: The main goal when treating malignancies with radiation is to deprive tumour cells of their reproductive potential. One approach is to induce tumour cell apoptosis. This study was conducted to evaluate the ability of carbon ions (12C) to induce apoptosis and cell cycle arrest in human HTB140 melanoma cells. Methods: In this in vitro study, human melanoma HTB140 cells were irradiated with the 62 MeV/n carbon (12C) ion beam, having two different linear energy transfer (LET) values: 197 and 382 keV/μm. The dose range was 2 to 16 Gy. Cell viability was estimated by the sulforhodamine B assay seven days after irradiation. The cell cycle and apoptosis were evaluated 48 h after irradiation using flow cytometry. At the same time point, protein and gene expression of apoptotic regulators were estimated using the Western blot and q-PCR methods, respectively. Results: Cell viability experiments indicated strong anti-tumour effects of12C ions. The analysis of cell cycle showed that12C ions blocked HTB140 cells in G2 phase and induced the dose dependent increase of apoptosis. The maximum value of 21.8 per cent was attained after irradiation with LET of 197 keV/μm at the dose level of 16 Gy. Pro-apoptotic effects of12C ions were confirmed by changes of key apoptotic molecules: the p53, Bax, Bcl-2, poly ADP ribose polymerase (PARP) as well as nuclear factor kappa B (NFκB). At the level of protein expression, the results indicated significant increases of p53, NFκB and Bax/Bcl-2 ratio and PARP cleavage. The Bax/Bcl-2 mRNA ratio was also increased, while no change was detected in the level of NFκB mRNA. Interpretation & conclusions: The present results indicated that anti-tumour effects of12C ions in human melanoma HTB140 cells were accomplished through induction of the mitochondrial apoptotic pathway as well as G2 arrest

    A New Low-Energy Proton Irradiation Facility to Unveil the Mechanistic Basis of the Proton-Boron Capture Therapy Approach

    Get PDF
    Protontherapy (PT) is a fast-growing cancer therapy modality thanks to much-improved normal tissue sparing granted by the charged particles' inverted dose-depth profile. Protons, however, exhibit a low biological effectiveness at clinically relevant energies. To enhance PT efficacy and counteract cancer radioresistance, Proton–Boron Capture Therapy (PBCT) was recently proposed. PBCT exploits the highly DNA-damaging α-particles generated by the p + 11B→3α (pB) nuclear reaction, whose cross-section peaks for proton energies of 675 keV. Although a significant enhancement of proton biological effectiveness by PBCT has been demonstrated for high-energy proton beams, validation of the PBCT rationale using monochromatic proton beams having energy close to the reaction cross-section maximum is still lacking. To this end, we implemented a novel setup for radiobiology experiments at a 3-MV tandem accelerator; using a scattering chamber equipped with an Au foil scatterer for beam diffusion on the biological sample, uniformity in energy and fluence with uncertainties of 2% and 5%, respectively, was achieved. Human cancer cells were irradiated at this beamline for the first time with 685-keV protons. The measured enhancement in cancer cell killing due to the 11B carrier BSH was the highest among those thus far observed, thereby corroborating the mechanistic bases of PBCT

    Molecular Investigation on a Triple Negative Breast Cancer Xenograft Model Exposed to Proton Beams

    Get PDF
    Specific breast cancer (BC) subtypes are associated with bad prognoses due to the absence of successful treatment plans. The triple-negative breast cancer (TNBC) subtype, with estrogen (ER), progesterone (PR) and human epidermal growth factor-2 (HER2) negative receptor status, is a clinical challenge for oncologists, because of its aggressiveness and the absence of effective therapies. In addition, proton therapy (PT) represents an effective treatment against both inaccessible area located or conventional radiotherapy (RT)-resistant cancers, becoming a promising therapeutic choice for TNBC. Our study aimed to analyze the in vivo molecular response to PT and its efficacy in a MDA-MB-231 TNBC xenograft model. TNBC xenograft models were irradiated with 2, 6 and 9 Gy of PT. Gene expression profile (GEP) analyses and immunohistochemical assay (IHC) were performed to highlight specific pathways and key molecules involved in cell response to the radiation. GEP analysis revealed in depth the molecular response to PT, showing a considerable immune response, cell cycle and stem cell process regulation. Only the dose of 9 Gy shifted the balance toward pro-death signaling as a dose escalation which can be easily performed using proton beams, which permit targeting tumors while avoiding damage to the surrounding healthy tissue

    Efekat erlotiniba i zračenja karbonskim jonima na proliferaciju nesitnoćelijskog adenokarcinoma pluća in vitro

    Get PDF
    XXXVI Oktobarski zdravstveni dani : Kragujevac, 28- 30. oktobar 2011
    corecore