52 research outputs found

    The Estrogen Receptor α Signaling Pathway Controls Alternative Splicing in the Absence of Ligands in Breast Cancer Cells.

    Get PDF
    BACKGROUND: The transcriptional activity of estrogen receptor α (ERα) in breast cancer (BC) is extensively characterized. Our group has previously shown that ERα controls the expression of a number of genes in its unliganded form (apoERα), among which a large group of RNA-binding proteins (RBPs) encode genes, suggesting its role in the control of co- and post-transcriptional events. METHODS: apoERα-mediated RNA processing events were characterized by the analysis of transcript usage and alternative splicing changes in an RNA-sequencing dataset from MCF-7 cells after siRNA-induced ERα downregulation. RESULTS: ApoERα depletion induced an expression change of 681 RBPs, including 84 splicing factors involved in translation, ribonucleoprotein complex assembly, and 3'end processing. ApoERα depletion results in 758 isoform switching events with effects on 3'end length and the splicing of alternative cassette exons. The functional enrichment of these events shows that post-transcriptional regulation is part of the mechanisms by which apoERα controls epithelial-to-mesenchymal transition and BC cell proliferation. In primary BCs, the inclusion levels of the experimentally identified alternatively spliced exons are associated with overall and disease-free survival. CONCLUSION: Our data supports the role of apoERα in maintaining the luminal phenotype of BC cells by extensively regulating gene expression at the alternative splicing level

    The Adaptive Immune System in Multiple Sclerosis: An Estrogen-Mediated Point of View

    Get PDF
    Multiple sclerosis (MS) is a chronic central nervous system inflammatory disease that leads to demyelination and neurodegeneration. The third trimester of pregnancy, which is characterized by high levels of estrogens, has been shown to be associated with reduced relapse rates compared with the rates before pregnancy. These effects could be related to the anti-inflammatory properties of estrogens, which orchestrate the reshuffling of the immune system toward immunotolerance to allow for fetal growth. The action of these hormones is mediated by the transcriptional regulation activity of estrogen receptors (ERs). Estrogen levels and ER expression define a specific balance of immune cell types. In this review, we explore the role of estradiol (E2) and ERs in the adaptive immune system, with a focus on estrogen-mediated cellular, molecular, and epigenetic mechanisms related to immune tolerance and neuroprotection in MS. The epigenome dynamics of immune systems are described as key molecular mechanisms that act on the regulation of immune cell identity. This is a completely unexplored field, suggesting a future path for more extensive research on estrogen-induced coregulatory complexes and molecular circuitry as targets for therapeutics in MS

    E2 regulates epigenetic signature on neuroglobin enhancer-promoter in neuronal cells

    Get PDF
    Estrogens are neuroprotective factors in several neurological diseases. Neuroglobin (NGB) is one of the estrogen target genes involved in neuroprotection, but little is known about its transcriptional regulation. Estrogen genomic pathway in gene expression regulation is mediated by estrogen receptors (ERα and ERβ) that bind to specific regulatory genomic regions. We focused our attention on 17β-estradiol (E2)-induced NGB expression in human differentiated neuronal cell lines (SK-N-BE and NT-2). Previously, using bioinformatics analysis we identified a putative enhancer in the first intron of NGB locus. Therefore, we observed that E2 increased the enrichment of the H3K4me3 epigenetic marks at the promoter and of the H3K4me1 and H3K27Ac at the intron enhancer. In these NGB regulatory regions, we found estrogen receptor alpha (ERα) binding suggesting that ERα may mediate chromatin remodeling to induce NGB expression upon E2 treatment. Altogether our data show that NGB expression is regulated by ERα binding on genomic regulatory regions supporting hormone therapy applications for the neuroprotection against neurodegenerative diseases

    Luminal long non-coding RNAs regulated by estrogen receptor alpha in a ligand-independent manner show functional roles in breast cancer

    Get PDF
    Estrogen Receptor alpha (ERα) activation by estrogenic hormones induces luminal breast cancer cell proliferation. However, ERα plays also important hormone-independent functions to maintain breast tumor cells epithelial phenotype. We reported previously by RNA-Seq that in MCF-7 cells in absence of hormones ERα down-regulation changes the expression of several genes linked to cellular development, representing a specific subset of estrogen-induced genes. Here, we report regulation of long non-coding RNAs from the same experimental settings. A list of 133 Apo-ERα-Regulated lncRNAs (AER-lncRNAs) was identified and extensively characterized using published data from cancer cell lines and tumor tissues, or experiments on MCF-7 cells. For several features, we ran validation using cell cultures or fresh tumor biopsies. AER-lncRNAs represent a specific subset, only marginally overlapping estrogen-induced transcripts, whose expression is largely restricted to luminal cells and which is able to perfectly classify breast tumor subtypes. The most abundant AER-lncRNA, DSCAM-AS1, is expressed in ERα+ breast carcinoma, but not in pre-neoplastic lesions, and correlates inversely with EMT markers. Down-regulation of DSCAM-AS1 recapitulated, in part, the effect of silencing ERα, i.e. growth arrest and induction of EMT markers. In conclusion, we report an ERα-dependent lncRNA set representing a novel luminal signature in breast cancer cells

    A Novel Functional Domain of Tab2 Involved in the Interaction with Estrogen Receptor Alpha in Breast Cancer Cells

    Get PDF
    Tab2, originally described as a component of the inflammatory pathway, has been implicated in phenomena of gene de-repression in several contexts, due to its ability to interact with the NCoR corepressor. Tab2 interacts also with steroid receptors and dismisses NCoR from antagonist-bound Estrogen and Androgen Receptors on gene regulatory regions, thus modifying their transcriptional activity and leading to pharmacological resistance in breast and prostate cancer cells. We demonstrated previously that either Tab2 knock-down, or a peptide mimicking the Estrogen Receptor alpha domain interacting with Tab2, restore the antiproliferative response to Tamoxifen in Tamoxifen-resistant breast cancer cells. In this work, we map the domain of Tab2 responsible of Estrogen Receptor alpha interaction. First, using both co-immunoprecipitation and pull-down with recombinant proteins, we found that the central part of Tab2 is primarily responsible for this interaction, and that this region also interacts with Androgen Receptor. Then, we narrowed down the essential interaction region by means of competition assays using recombinant protein pull-down. The interaction motif was finally identified as a small region adjacent to, but not overlapping, the Tab2 MEKK1 phosphorylation sites. A synthetic peptide mimicking this motif efficiently displaced Tab2 from interacting with recombinant Estrogen Receptor alpha in vitro, prompting us to test its efficacy using derivatives of the MCF7 breast carcinoma cell lines that are spontaneously resistant to Tamoxifen. Indeed, we observed that this mimic peptide, made cell-permeable by addition of the TAT minimal carrier domain, reduced the growth of Tamoxifen-resistant MCF7 cells in the presence of Tamoxifen. These data indicate a novel functional domain of the Tab2 protein with potential application in drug design

    Multiple Sclerosis disease: a computational approach for investigating its drug interactions

    Get PDF
    Multiple Sclerosis (MS) is a chronic and potentially highly disabling disease that can cause permanent damage and deterioration of the central nervous system. In Europe it is the leading cause of non-traumatic disabilities in young adults, since more than 700,000 EU people suffer from MS. Although recent studies on MS pathophysiology have been provided, MS remains a challenging disease. In this context, thanks to recent advances in software and hardware technologies, computational models and computer simulations are becoming appealing research tools to support scientists in the study of such disease. Thus, motivated by this consideration we propose in this paper a new model to study the evolution of MS in silico, and the effects of the administration of Daclizumab drug, taking into account also spatiality and temporality of the involved phenomena. Moreover, we show how the intrinsic symmetries of the system can be exploited to drastically reduce the complexity of its analysis.Comment: Submitted to CIBB 2019 post proceedings - LNC

    Ghrelin and des-acyl ghrelin inhibit cell death in cardiomyocytes and endothelial cells through ERK1/2 and PI 3-kinase/AKT

    Get PDF
    Ghrelin is an acyl-peptide gastric hormone acting on the pituitary and hypothalamus to stimulate growth hormone (GH) release, adiposity, and appetite. Ghrelin endocrine activities are entirely dependent on its acylation and are mediated by GH secretagogue (GHS) receptor (GHSR)-1a, a G protein–coupled receptor mostly expressed in the pituitary and hypothalamus, previously identified as the receptor for a group of synthetic molecules featuring GH secretagogue (GHS) activity. Des-acyl ghrelin, which is far more abundant than ghrelin, does not bind GHSR-1a, is devoid of any endocrine activity, and its function is currently unknown. Ghrelin, which is expressed in heart, albeit at a much lower level than in the stomach, also exerts a cardio protective effect through an unknown mechanism, independent of GH release. Here we show that both ghrelin and des-acyl ghrelin inhibit apoptosis of primary adult and H9c2 cardiomyocytes and endothelial cells in vitro through activation of extracellular signal–regulated kinase-1/2 and Akt serine kinases. In addition, ghrelin and des-acyl ghrelin recognize common high affinity binding sites on H9c2 cardiomyocytes, which do not express GHSR-1a. Finally, both MK-0677 and hexarelin, a nonpeptidyl and a peptidyl synthetic GHS, respectively, recognize the common ghrelin and des-acyl ghrelin binding sites, inhibit cell death, and activate MAPK and Akt
    • …
    corecore