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Simple Summary: Aberrant alternative splicing is now considered a hallmark of cancer, including
breast cancer. This results in the production of novel tumor-specific splice RNA variants, and the
activation of biological processes such as epithelial-to-mesenchymal transition, leading to more
aggressive phenotypes. The purpose of this study was to explore the role of estrogen receptor α in
regulating the expression of RNA-binding proteins in luminal breast cancer cells and to determine
the effects of its downregulation at the isoform level by exploring changes in isoform usage and
alternative splicing. The findings of this study unravel a novel layer of gene regulation mediated
by estrogen receptor α, which is fundamental for breast cancer cell growth as well as epithelial-
to-mesenchymal transition. Finally, we foresee that this novel feature should be considered when
studying the functional roles of estrogen receptor α in the onset and progression of breast cancer.

Abstract: Background: The transcriptional activity of estrogen receptor α (ERα) in breast cancer (BC)
is extensively characterized. Our group has previously shown that ERα controls the expression of
a number of genes in its unliganded form (apoERα), among which a large group of RNA-binding
proteins (RBPs) encode genes, suggesting its role in the control of co- and post-transcriptional events.
Methods: apoERα-mediated RNA processing events were characterized by the analysis of transcript
usage and alternative splicing changes in an RNA-sequencing dataset from MCF-7 cells after siRNA-
induced ERα downregulation. Results: ApoERα depletion induced an expression change of 681 RBPs,
including 84 splicing factors involved in translation, ribonucleoprotein complex assembly, and 3′end
processing. ApoERα depletion results in 758 isoform switching events with effects on 3′end length
and the splicing of alternative cassette exons. The functional enrichment of these events shows
that post-transcriptional regulation is part of the mechanisms by which apoERα controls epithelial-
to-mesenchymal transition and BC cell proliferation. In primary BCs, the inclusion levels of the
experimentally identified alternatively spliced exons are associated with overall and disease-free
survival. Conclusion: Our data supports the role of apoERα in maintaining the luminal phenotype
of BC cells by extensively regulating gene expression at the alternative splicing level.

Keywords: breast cancer; estrogen receptor; alternative splicing; EMT; splicing signature

1. Introduction

Alternative splicing (AS) is a complex regulatory mechanism of gene expression
which is dysregulated in many oncological contexts, including a wide range of cancers [1].
Indeed, AS dysfunction is now considered a new hallmark of cancer, as this alteration has
an impact on the splicing patterns of different oncogenes and tumor suppressor genes,
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including transcription factors (TFs), splicing factors (SFs) and RNA-binding proteins
(RBPs) [2,3]. One such cancer type is breast cancer (BC), in which AS dysregulation is
one of the main steps involved in the development and progression of the disease [4,5].
Ranking number one in women’s cancer-related deaths worldwide, BC is a heterogeneous
disease covering four different subtypes characterized by distinct molecular and clinical
phenotypes, among which the luminal estrogen receptor α positive (Erα+) subtype [6] is
the most frequent, representing up to 80% of diagnosed cases [7]. The ERα+ BC subtype is
clinically characterized by being mildly aggressive and by showing an optimal response to
targeted endocrine therapies [8].

ERα, together with other transcription factors such as FoxA1, TFAP2C, and GATA3 are
key factors in the determination and maintenance of the epithelial phenotype of mammary
cells, as activated not only by estrogen, but also by other signaling pathways [9,10]. This
activity is reflected in BC, since tumors that retain the expression of ERα show several
epithelial features and, clinically, are less invasive and aggressive than other subtypes
exhibiting mesenchymal features [11]. The transcriptional activity of ERα in breast tumor
cells has been the subject of an impressive number of research papers in the last decades,
especially because it represents one of the prototypes of druggable molecules in cancer,
testified by the success of Tamoxifen and other antiestrogens in BC treatment since 1975 [12].
Genome-wide studies have shown the relevance and wideness of the ERα-dependent
transcriptional response following the stimulation of cultured BC cells with either estrogen
or anti-estrogenic compounds, but also in its unliganded (apoERα) form [13,14].

Moreover, several recent studies have shown that the action of ERα is not limited
to controlling the transcription of protein-coding genes [15], but also actions such as
controlling the noncoding elements comprising of enhancer RNAs (eRNAs) [16,17], long-
noncoding RNAs (ncRNAs) and microRNAs (miRNAs), delineating a more complex
regulatory network which includes post-transcriptional regulation [14]. Other groups
have demonstrated that ERα coordinates its transcriptional output with the selective
modulation of the mRNA translation process [18]. Very recently, an intriguing study by Xu
and colleagues reported that ERα directly binds several RNAs through its hinge domain,
resulting in AS and translational control of target RNAs [19]. These findings highlight
novel ERα features in controlling several aspects of RNA biology in BC.

In our lab we addressed whether the hormone-independent activity of apoERα in
tumor cells regulates gene transcription as demonstrated in other experimental model
systems [20]. Indeed, apoERα is needed to maintain an active, euchromatic status of
the E-cadherin coding gene [21], an essential protein for preserving the epithelial cell
phenotype. At a genome-wide level, the transient downregulation of apoERα in MCF-7
BC cells allowed a description of more than 4000 apoERα binding sites, regulating the
transcription of genes related to cell proliferation and epithelial differentiation [13]. While
these genes were within the larger group of estrogen-regulated genes, ontology terms
exquisitely related to the control of the epithelial phenotype emerged. Among these
genes, the RBP class was outstanding (more than 680, of which 85 represented SFs), thus
suggesting that ERα may control gene expression at different levels, such as the regulation
of AS.

In this work, we took advantage of the RNA-seq data of apoERα-targeted MCF-7 cells
to explore the transcriptomic changes in terms of transcript isoform usage and AS. Results
demonstrated that even in an absence of estrogen stimulation, ERα exerted an extensive
regulation of gene expression at a level further than transcription. Comparisons with
tumor-derived data support the relevance of the activity of ERα in primary luminal BCs.

2. Results
2.1. apoERα Activity Regulates the Expression of RBPs and SFs in the MCF-7 BC Cell Line

To explore the functional role of apoERα activity on the gene expression process in
BC, a differential gene expression (dGE) analysis was performed on our previously pub-
lished paired-end RNA-seq experiment [22] consisting of hormone-deprived MCF-7 BC
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cells treated with a control, or with ESR1-targeting siRNA (siCTRL vs. siERα). Silencing
apoERα in MCF-7 significantly perturbed the expression of 6611 genes (|log2FC| > 0.2 and
adj. p < 0.05), where 3741 were downregulated and 3140 were upregulated (Supplementary
Materials Figure S1a,b and Table S1a). As expected, the functional enrichment analysis
showed the downregulated genes as enriched in terms of cell cycle progression, including
cell proliferation, DNA replication, and DNA damage repair (Supplementary Materials
Figure S1c and Table S1b), in line with the cellular phenotype previously reported [13]. Con-
versely, upregulated genes were particularly enriched in EMT-related processes, including
actin cytoskeleton organization, cell movement, cell morphogenesis involved in differentia-
tion, developmental growth, and the positive regulation of cell migration (Supplementary
Materials Figure S1d and Table S1c).

Interestingly, apoERα depletion induced significant expression changes to 681 RBPs,
most of which were downregulated (486, 71%) (Figure 1a,b and Supplementary Materials
Table S1d). A total of 84 RBPs (12.5%) were represented by SFs, of which 63 (75%) and 21
(25%) were down- and upregulated, respectively (Supplementary Materials Figure S2a,b
and Table S1e). The functional enrichment analysis indicated that downregulated RBPs
were enriched in terms of RNA processing, including translation, ribonucleoprotein com-
plex assembly and biogenesis, RNA localization, and 3′end processing (Figure 1b and
Supplementary Materials Table S1f). Conversely, upregulated RBPs were exclusively en-
riched in other processes, such as the ncRNA metabolic process, actin cytoskeleton filament
organization, the regulation of binding, and the serine/threonine kinase signaling pathway
(Figure 1c and Supplementary Materials Table S1f).

The depletion of apoERα causes a significant decrease in the expression of epithelial-
specific SFs, such as ESRP1 and ESRP2, the core splicing regulatory proteins in epithelial
cells [23,24], while inducing the expression of EMT-related RBPs such as QKI [25] and
SMAD4 [26] (Supplementary Materials Table S1e). Therefore, to further explore the link
between the apoERα-regulated RBPs and the EMT process, the apoERα-regulated RBPs
were overlapped with two independent public lists of RBPs. The first list was identified
as DE between epithelial and mesenchymal BC cell lines [23] (Supplementary Materials
Table S2a), and the second list included DE RBPs upon the induction of the EMT process
by the overexpression of the EMT activator ZEB1 in the H358 epithelial cells [27] (Supple-
mentary Materials Table S2b). This analysis revealed 54 RBPs as DE in all the three datasets
(Figure 1d and Supplementary Materials Table S2c,d). Interestingly, the overlap with both
studies indicated that apoERα depletion induced RBPs that were highly expressed in mes-
enchymal cells, whereas it decreased the expression of RBPs that were highly expressed in
epithelial cells (Figure 1e and Supplementary Materials Table S2c,d). Furthermore, to search
for the possible associations between ERα and these apoERα-regulated RBPs, a correlation
analysis between the expression of ERα and of these RBPs was performed considering
RNA-seq data from 772 ERα+ BC samples from TCGA [28]. This analysis revealed two
sets of RBPs comprising of 230 (55%) DE RBPs that were positively correlated (rho > 0.10,
p < 0.005), and 188 (45%) RBPs that were negatively correlated (rho < −0.10, p < 0.005)
with ERα expression (Supplementary Materials Table S2e). In particular, 168 RBPs (out of
230, 73%) that were correlated with ERα showed a significant downregulation following
apoERα depletion. Similarly, 94 RBPs (out of 188, 50%) that anti-correlated with ERα were
upregulated in our dataset (Figure 1f and Supplementary Materials Table S2e). Importantly,
a hallmark gene set enrichment analysis showed that anti-correlated RBPs were enriched in
terms of apical junction organization, EMT, hypoxia, and P53 signaling pathway hallmarks
(Figure 1g and Supplementary Materials Table S2f), whereas the positively correlated RBPs
were enriched in terms of the cell cycle and proliferations, such as Myc targets, E2F targets,
G2M checkpoint hallmarks, and the stress-related response such as unfolded protein re-
sponse hallmarks (Figure 1h and Supplementary Materials Table S2f). Selected examples
representing the top three EMT-related RBPs, correlating (MSI2, ESRP1, and FKBP4) and
anti-correlating (SAMD4A, QKI, and MBNL1) with ERα expression, are shown in Figure 1i.
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Figure 1. RBPs gene expression changes induced by apoERα in MCF-7 cells and their correlation with ERα mRNA levels in
primary tumors. (a) Heat map reporting the expression levels of RBPs in siCTRL and siERα conditions ranked by z-score.
(b,c) Bar plots representing significantly enriched processes related to apoERα-induced (b) and apoERα-repressed RBPs (c),
respectively. (d) Venn diagram showing the overlap between regulated RBPs in this study and those in GSE30290 and
GSE75492 datasets. (e) Heat map showing the log2FC of overlapping RBPs between the three studies in (d). Missing RBPs
from each study are reported in white color. (f) Stacked bar plot reporting the number of RBPs positively or negatively
correlated with ERα mRNA levels in primary tumors (y-axis) and their regulation by apoERα activity depletion in MCF-7
cells (x-axis). (g,h) Bar plots reporting enriched gene sets hallmarks related to RBPs that are anti-correlated (g) and correlated
(h) with ERα mRNA levels in primary tumors, respectively. (i) Scatter plots reporting six selected RBPs showing significant
correlations with ERα mRNA levels in primary tumors.

Moreover, the comparison of apoERα-regulated RBP genes to a previously published
list of RBPs reported as DE between ERα+ BC tissues and their adjacent normal counter-
parts [29] revealed 413 RBPs common to both datasets (exact hypergeometric probability,
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p < 0.0001) (Supplementary Materials Figure S2c and Table S2g). The overlapping DE RBP
genes included 130 (31%) RBPs coherently regulated in both datasets (83 downregulated
and 47 upregulated), and 283 (69%) RBP genes showed an opposite expression change
(233 downregulated in apoERα silencing while upregulated in tumors, and 50 upregulated
in apoERα silencing while downregulated in tumors) (Supplementary Materials Figure S2c
and Table S2g).

2.2. EMT-Related Gene Isoforms Are Differentially Expressed upon apoERα Silencing

To identify genes with isoform switching events driven by apoERα depletion, a dif-
ferential isoform usage (dIU) analysis was performed using IsoformSwitchAnalyzeR [30]
(Supplementary Materials Figure S2a). This analysis revealed 605 genes with isoforms that
were differently regulated upon apoERα depletion, with a total of 758 isoforms involved in
significant switching events (adj. p < 0.05 and |dIF| > 0.05) (Figure 2b,c and Supplemen-
tary Materials Table S3a). The functional enrichment analysis of genes harboring significant
switching isoform pairs revealed terms related to cell cycle regulation (e.g., mitotic cell
cycle phase transition) and to cell migration (e.g., actin filament organization, cell-cell
junction organization, and the establishment of vesicle localization) (Supplementary Ma-
terials Table S3b). The annotation of switching isoforms showed that apoERα depletion
induced an enrichment of isoforms characterized by specific structural changes (Figure 2d
and Supplementary Materials Table S3c). Specifically, apoERα silencing increased the
expression of isoforms characterized by longer 3′UTRs (adj. p < 0.001), longer 5′UTRs
(adj. p < 0.01), more protein domains (adj. p < 0.001), more intron retention (IR) events
(adj. p < 0.01), an insensitivity to nonsense-mediated decay (NMD) (adj. p < 0.01), and by
having more coding than non-coding transcripts (adj. p < 0.01) (Supplementary Materials
Table S3c). Again, genes harboring isoform switching events with putative downstream
structural consequences were enriched in terms of the cell cycle progression and DNA
repair (e.g., the DNA damage checkpoint, the G2 DNA damage checkpoint, and the regula-
tion of chromosome organization) and cell migration (e.g., actin filament-based process)
(Supplementary Materials Table S3d,e).

The comparison of the induced and repressed isoforms indicated an enrichment of
putative AS events (ASEs) possibly underlying the observed isoform switching events,
including exon skipping (ES) and IR events (adj. p < 0.05), differential transcription start
site (TSS) usage (adj. p < 0.05), and differential transcription termination site (TTS) usage
(adj. p < 0.0001) (Figure 2e and Supplementary Materials Table S3f). As shown in Figure 2f,
USO1 is a clear example of a gene with switching isoform pairs identified in our analysis.
In this gene, the apoERα depletion resulted in a significant switch in the relative abundance
of the two isoforms (ENST00000514213.6 induced, and ENST00000264904.8 repressed)
characterized by the differential inclusion of two alternative exons, of which one encodes
for a domain (PF04869) involved in the dimerization of the globular head of the protein
(Figure 2g).

Interestingly, the dIU analysis revealed peculiar cases in which the gene- and isoform-
specific responses to apoERα depletion were non-concordant. For instance, the expression
analysis showed 120 isoforms to be repressed, while their parent genes were upregulated
by the dGE analysis (Supplementary Materials Figure S3a). Similarly, apoERα depletion
appeared to induce 160 isoforms, while their parent genes were downregulated by dGE. On
the other hand, several genes were not regulated by the dGE analysis but were significantly
regulated at the isoform level only, as exemplified in Supplementary Materials Figure S3b.
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Figure 2. Isoform switching events observed upon apoERα silencing in MCF-7. (a) Scheme depicting the principle behind
differential isoform usage (dIU) analysis. (b) Bar plots reporting the number of significantly switching genes and isoforms
involved in switching events. (c) Volcano plot reporting the differential isoform fraction (dIF) and relative significance
(−log10(adj. p.)) of switching isoform pairs. The top significant switches are labeled accordingly. (d) Plot showing the
fraction of switches affected by either of the opposing consequences (x-axis) for each pair of opposite consequences (y-axis).
Fractions significantly different from 0.5 indicated an enrichment of isoforms with the indicated consequences. (e) ASEs
enrichment analysis reporting the fraction of switches resulting from each specific ASE, such as MES/MEI, multiple
exon skipping/inclusion; ES/EI, exon skipping/inclusion; A5′/A3′, alternative 5′/3′ splice sites; IR, intron retention;
ATTS/ATSS, alternative transcription termination/start sites. (f) Isoform switching plot for USO1 gene. Upper panel shows
the isoforms involved in the switch and the encoded protein domains. Histograms show the gene and isoform expression
levels in normalized TPM units and their DE status (ns, not significant; ***, p < 0.0001). (g) Downstream effects of USO1
isoform switching event. Triangles represent the protein domains of the protein (grey circle). The domain encoded by the
skipped exon is highlighted in red whereas its interacting domain is in blue. Dashed lines represent the suppressing effects
of the ES event.
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2.3. apoERα Depletion Induces Internal ASEs in EMT-Related Genes

To further investigate the ASEs regulated by apoERα depletion, a differential AS
analysis was performed. The analysis revealed 825 ASEs upon apoERα depletion, of
which 546 (65%) classified as ES, followed by 145 (17%) that were classified as IR, 73 (9%)
that were classified as A3′, 45 (5%) that were classified as A5′, and 37 (4%) mutually
exclusive exon (MX) events (Figure 3a,b and Supplementary Materials Table S4a–e). The
differential inclusion levels (dPSI, differential percent spliced-in index) for the significant
ASEs identified is reported in Figure 3c. The dPSI of most of the significant ASEs falls
within the range of −0.2 to 0.2, except for RI events, where the dPSI of most of the events
falls within the range of −0.1 to 0.1.

The top 100 significant ASEs were ES events and the top 50 of these are shown
in Figure 3d. Upon apoERα depletion, most of ASEs (70%) had a dPSI greater than 0
(Figure 3d and Supplementary Materials Table S4). Importantly, in line with the dIU analy-
sis, the functional enrichment analysis of genes harboring ASEs showed an enrichment in
terms of EMT, such as actin cytoskeleton organization, actin filament-based movements,
vesicle mediated transport, as well as cell progression processes such as mitotic cell cycle
phase transition, DNA mismatch repair, spindle organization, the chromosome segregation
process, and the mRNA metabolic process; and metabolism processes including the phos-
pholipid metabolic process, the hexose metabolic process, and the carbohydrate derivative
biosynthetic process (Figure 3e and Supplementary Materials Table S4f). Selected examples
of EMT-related genes harboring the most significant ES events are reported in Figure 3f.

To explore our hypothesis that apoERα controls EMT-related ASEs, the apoERα-
modulated ASEs were compared with 191 ASEs that were reported as significantly dif-
ferentially regulated between epithelial and mesenchymal BC cell lines by Shapiro and
colleagues [23]. Interestingly, 26 AS genes overlapped between the two datasets (exact hy-
pergeometric test, adj. p < 0.0001) (Supplementary Materials Figure S4a,b and Table S5a,b).
In particular, 26 ES and 2 MX events were common between the two datasets, of which
19 ES events and 1 MXE event were coherently regulated. For example, the most sig-
nificant ES event upon apoERα silencing was an ES of the 7th exon of the amyloid beta
precursor-like protein 2 (APLP2) gene (dPSI = −0.176; adj. p < 0.0001) ranked as the top
third significant event in the study of Shapiro et al. Similarly, the ES event (dPSI = −0.25;
adj. p < 0.0001) in the USO1 vesicle transport factor (USO1) gene was also repressed in this
dataset. Furthermore, the set of apoERα-modulated ASEs overlapped with a published list
of ASEs occurring in a 7-day time-course experiment of EMT upon the overexpression of
the EMT activator, ZEB1, in the H358 epithelial cells [27]. This analysis revealed 105 (60 ES,
10 MX, 27 IR, 5 A3, and 3 A5′) overlapping ASEs. Of this, 75 (71%) ASEs were coherently
regulated (Supplementary Materials Figure S4c,d and Table S5c,d).
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Figure 3. Overview of differential AS changes occurring upon apoERα depletion in MCF-7 cells. (a) Stacked bar plot
representing the number of significant ASEs for each AS type. Red and cyan colors represent the number of included and
repressed ASEs, respectively. (b) Pie-chart representing the percentage of ASE types. (c) Density plot representing the dPSI
of the significant ASEs. (d) Heat map reporting the dPSI values of the top 50 significant ASEs. Color bar intensities are
proportional to the inclusion level of each event (Z-score). (e) Dot plot representing the GO enrichment analysis of genes
harboring significant ASEs. The x-axis represents the different ASE types. The size of the dots is proportional to the number
of genes enriched in each GO term. The color of the dots is proportional to the significance of the enrichment (−log10 (P)).
(f) Sashimi plots for the six top significant ASEs. Alternative exons (in red) and their flanking constitutive exons involved in
each event are reported. The numbers above junctions indicate the total number of reads supporting either inclusion or
exclusion of the ASE.
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2.4. The apoERα-Regulated RBPs Are Significantly Correlated with ERα mRNA Levels in ERα+
BCs and Are Predicted Regulators of the apoERα-Modulated ASEs

To determine candidate SFs potentially regulating the identified ASEs in our dataset, a
differential RBP-binding motif enrichment analysis was performed for the regions involved
in each ASE type, based on the direction of regulation (i.e., dPSI > 0.05, dPSI < −0.05).
This analysis revealed a total of 95 enriched SF-binding motifs (37 enriched for the ES
events, 41 for IR events, 49 for A5′ events, 61 for A3′ events, and 91 SFs enriched for MXE
events) (Supplementary Materials Figure S5a–j and Table S6). Importantly, while showing
a preferential binding depending on the direction of regulation and the ASE type, most of
the enriched SFs were common among ASE types (Supplementary Materials Figure S5a–j
and Table S6). Conversely, the binding motifs of 17 and three SFs (TUT1, TIA1, and TIAL1)
were exclusively enriched in MX and A3′ events, respectively. In the case of ES events, the
enriched SF motifs were prevalently predicted upstream of the spliced exons, whereas in
the case of EI events, the enriched SF motifs were prevalently predicted within the spliced
exons (Supplementary Materials Table S6). Among the 95 enriched SFs, 49 were DE upon
ERα silencing, either at the gene or isoform level and most of them (85%) were significantly
downregulated (Supplementary Materials Figure S5k and Table S6). In addition, 57 en-
riched SFs exhibited either significant AS changes or were significantly correlated with ERα
in primary BCs (Supplementary Materials Table S6). A group formed by 11 SFs that were
enriched in ASEs correlated with ERα mRNA levels in primary tumors and exhibited sig-
nificant regulations both at gene and AS levels upon apoERα depletion in MCF-7 cells. The
top three significant SFs include SAMD4A (log2FC = 0.91; adj-p < 0.0001; rho = −0.45; rho
p < 0.0001), CELF1 (log2FC (CELF1) = −0.13; adj-p = 0.11; log2C (CELF1-204) = −0.52, adj-p
(CELF1-204) < 0.0001; log2FC (CELF1-202) = 3.47, adj-p (CELF1-202) < 0.0001; rho = 0.20;
rho p < 0.0001) and QKI (log2FC = 0.27; adj-p < 0.01; rho = −0.38; rho p < 0.0001). Although
they were not considered for the RBP-binding motif enrichment analysis because of their
missing position weight matrices and consensus binding motifs, a second group of 73 SFs
were correlated with ERα mRNA levels in primary tumors and also exhibited significant AS
changes upon apoERα depletion (Supplementary Materials Table S6). Noticeably, hnRNPL,
which is known to interact with DSCAM-AS1 [31,32], an apoERα-regulated lncRNA [33],
was regulated at the isoform level and was positively correlated with ERα mRNA levels in
primary tumors (log2FC (HNRNPL-210) = −0.37; adj-p < 0.05; rho = 0.23; rho p < 0.0001).

2.5. apoERα-Regulated Exons Are Differentially Included in Primary BCs and Correlate with ERα
mRNA Levels

The identified apoERα-modulated ASEs were further explored in 965 BC samples
including 773 ERα+ BCs, 192 ERα- BCs, and 113 adjacent normal samples (Supplemen-
tary Materials Table S7a) using the data from TCGASpliceSeq database [34]. Among the
apoERα-regulated ASEs, 228 (28%) were detected in these data (Supplementary Materials
Table S7b–d). Interestingly, among them, 81 ASEs were significantly correlated (p < 0.05)
with Erα mRNA levels in Erα+ BC samples (50 and 38 positively and negatively correlated,
respectively) (Figure 4a and Supplementary Materials Table S7e). The most significantly
correlated ASEs (p < 0.0001) were in an ES event in the calsyntenin-1 gene (CLSTN1)
(rho = −0.44; dPSI =−0.05), an ES event in the erythrocyte membrane protein band 4.1-like
1 (EPB42L1) gene (rho = −0.40; dPSI = −0.118), an ES event in the myoferlin (MYOF) gene
(rho = −0.36; dPSI = 0.153), and an ES event in the Ral GEF withPH domain and SH3
binding motif 2 (RALGPS2) gene (rho = 0.25; dPSI = −0.103).
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Figure 4. Analysis of the apoERα-regulated ASEs in normal and BC tissues. (a) Heat map reporting the dPSI levels in
MCF-7 and the correlation coefficient of the ASEs expression (PSI value) with ESR1 expression in ERα+ BC samples from
the BRCA TCGASpliceSeq database. The ASEs are labeled as their gene name, exons involved in the event (regulated and
flanking exons), and the type of event. (b) Heat map reporting dPSI values of ASEs compared among (i) ERα+ vs. ERα-,
(ii) ERα+ vs. normal, and (iii) high ESR1 vs. low ESR1 expressing patients. The plot reports 51 ASEs which were significant
(p < 0.05) in all comparisons. (c) Box plots reporting the PSI values of selected ASEs whose inclusion levels are different
among compared groups (tumor vs. normal) and (ERα+ vs. ERα-) patients. Wilcoxon p-value (***, p < 0.00001). (d) Heat
map representing the correlation of ASE PSI values of ERα-regulated ASEs with enriched hallmarks as reported using
PEGASAS algorithm [35]. (e,f) Survival analysis plots showing the top significant ASE associated with overall survival (OS)
(e) and disease-free (DFS) survival (f) of Erα+ BC patients. Patients are divided into a high expression (ASE = high) and a
low expression event (ASE = low) based on the median PSI calculated among all patients.

The analysis of the inclusion levels of these ASEs in different groups of BC pa-
tients showed 140 ASEs characterized by significantly different inclusion/exclusion levels
(|dPSI| > 0.05; p < 0.05). Specifically, 53 ASEs were differentially included between ERα+
and ERα- BC samples, 72 between BC and normal samples, and 15 between ERα+ BC
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samples characterized by high or low ERα mRNA levels (Figure 4b and Supplementary
Materials Table S7f). The inclusion/exclusion levels of eight ASEs were significantly differ-
ent in all the three comparisons (Figure 4b and Supplementary Materials Table S7f) and
all these ASEs were significantly correlated (p < 0.05) with ERα mRNA levels in ERα+
BCs (Supplementary Materials Table S7f). In ERα+ BCs, compared to normal samples, the
sixth exon of the collagen type VI alpha 3 chain coding gene (COL6A3) involved in an ES
event (COL6A3_5_6_7_ES) exhibited a significantly higher inclusion level in tumor samples
(dPSI = 0.49; p < 0.0001). Another significantly different ES event was observed in the same
gene (COL6A3_2_4_5_ES) and involved the third and fourth exons of the COL6A3 gene.
The event had a higher inclusion in tumors as compared to normal samples (dPSI = 0.21;
p < 0.0001). Selected examples of these ASEs are reported in Figure 4c, and the full list is
provided in Supplementary Materials Table S7f.

The association between the apoERα-modulated ASEs and molecular pathways in
ERα+ BCs was then investigated using PEGASAS (details in Section 4) [35]. This analysis
revealed two main clusters of molecular pathways characterized by a significant corre-
lation with the inclusion/exclusion levels of the analyzed ASEs (Figure 4d). Specifically,
a cluster of 12 ASEs was correlated mainly with EMT-related pathways, including the
TGFB_SIGNALING_PATHWAY, EMT, and APICAL_JUNCTION pathways, but also the
KRAS_SIGNALING_UP, ESTROGEN_RESPONSE, and CHOLESTEROL_HOMEOSTASIS
pathways. The second cluster was related to cell cycle progression related pathways such
as DNA_REPAIR, E2F_TARGETS, G2M_CHECKPOINT, MYC_TARGETS_V1, and MI-
TOTIC_SPINDLE pathways, in addition to other metabolism-related pathways such as OX-
IDATIVE_PHOSPHORYLATION and GLYCOLYSIS. Seven ES events (PLOD2_14_15_16_ES,
MYOF_16_17_18_ES, EPB41L1_19_20_21_ES, LMO7_9_12_13_ES, MLLT4_15_16_17_ES,
ARGEF11_38_39_40_ES, and CLTSTN1_10_11_12_ES) were correlated (r > 0.3) with terms
belonging to the first cluster, whereas most them were negatively correlated with those
of the second one (Figure 4d). Noticeably, these ASEs exhibited a differential inclu-
sion/exclusion level between tumor samples and normal samples and were significantly
correlated with ERα mRNA levels. In addition, two ASEs (DNM2_14_15_17_ES and
SPTAN1_22_23_24_ES) were negatively correlated with all terms of the first cluster and
showed a positive correlation with four cell cycle-related terms (E2F_TARGETS, G2M
CHECKPOINT, MYC_TARGET_V1, and MYC_TARGET_V2) (Figure 4d and Supplemen-
tary Materials Table S7g).

Furthermore, a survival analysis of ERα+ BC patients from TCGA was performed
by stratifying patients based on the inclusion levels of apoERα-modulated ASEs. Twelve
ASEs (11 ES events and 1 A3′ event) were significantly associated with patient overall
survival (OS) (Supplementary Materials Table S7h). In particular, a higher inclusion of the
6th exon of COL6A3 was significantly associated with a longer OS (p < 0.01) (Figure 4e
and Supplementary Materials Table S7h). Similarly, a higher inclusion of the remaining
11 ASE events was also associated with a longer patient OS. Noticeably, two ES events in
the COL6A3 gene (COL6A3_2_4_5_ES, COL6A3_5_6_7_ES) were associated with a longer
patient OS. On the other hand, 7 ASEs (6 ES events and 1 A3′ event) were significantly
associated with patients’ disease-free survival (DFS) (Supplementary Materials Table S7h).
Four and three ASEs were associated with a better and worse DFS, respectively. Notably, a
higher inclusion level of the 12th exon of the protein phosphatase 4 regulatory subunit 3B
(PPP4R3B/SMEK2) gene was associated with both better DFS (p < 0.01) as well as longer
OS (p < 0.05) (Figure 4f and Supplementary Materials Table S7h).

3. Discussion

In the present study, hormone-independent ERα (apoERα) activity was explored in
MCF-7 cells at both transcriptional and splicing levels. We demonstrated that apoERα reg-
ulates a set of relevant ASEs in tumor tissues which correlate with ERα mRNA levels and
show a prognostic value in BC patients. The role of apoERα in maintaining the expression
of epithelial genes and in promoting cell cycle progression in MCF-7 cells was evidenced
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through the analysis of a deep paired-end RNA sequencing experiment. Clearly, apoERα
silencing significantly hampered the expression of cell cycle-related genes which are essen-
tial for cell proliferation and survival, whereas promoting the increased expressions and
activities of a number of mesenchymal markers may result in a more mesenchymal-like
phenotype in surviving cells, as previously observed [36]. Interestingly, apoERα silenc-
ing significantly repressed the expression of RBP and SF genes which paralleled their
significant regulation at the AS level.

The impact of apoERα depletion at the isoform level was evaluated by three indepen-
dent analyses including the dIE, dIU, and differential AS analyses. Our computational
pipeline sheds light on the importance of considering the analysis at the level of isoforms,
rather than limiting the attention on the gene level as previously reported [37]. Our data
suggest that complex mechanisms at the level of RNA transcripts drive the expression of
specific protein isoforms, which may be functionally different. An analysis at the gene
level confirmed that Erα, in the absence of hormones, is crucial for cell proliferation and
for maintaining an epithelial-like luminal phenotype of MCF-7 BC cells [13,32]. Notably,
several cell cycle-related genes such as the E2F transcription factor 1 (E2F1) gene, the
checkpoint kinases 1 (CHEK1) and 2 (CHEK2) genes, cyclin dependent kinases 1 (CDK1),
2 (CDK2), 4 (CDK4), 6 (CDK6), and 7 (CDK7), and minichromosome maintenance complexes
3 (MCM3), 4 (MCM4), 5 (MCM5), 6 (MCM6), 7 (MCM7) and 10 (MCM10) were significantly
downregulated by apoERα depletion. Noticeably, all of the aforementioned genes were
induced under the 17β-estradiol stimulation of MCF-7 cells [38,39]. On the other hand,
genes known to be involved in EMT processes, such as the tumor growth factors beta
1 (TGFB1), 2 (TGFB2), and 3 (TGFB3); their receptors, type 1 (TGFBR1), 2 (TGFBR2) and
3 (TGFBR3); the CD44 antigen (CD44) gene; the collagen type V alpha 1 chain (COL5A1)
gene; the type VI alpha 1 (COL6A1) and 2 chains (COL6A2); and the filamin A (FLNA)
gene were significantly induced by apoERα silencing [40]. Such a transition from the
epithelial-to-mesenchymal phenotype was indeed reported in a study [36] showing that
by stably knocking down ERα, MCF-7 cells underwent a potent clonal EMT, as well as
changes in the expression and activity of matrix macromolecules, finally resulting in BC
cell migration and invasion.

Our attention was particularly attracted to the high number of RBP and SF genes
regulated by apoERα. An important number of studies compared the transcriptome of
human BC versus healthy matched tissues, finding approximately 50% of altered tran-
scripts of genes encoding RBP and SF proteins [41,42]. The EMT splicing signature contains
RBP and SF proteins as main components involved in the changing of splicing patterns in
in vitro models [23]. Importantly, these changes in splicing patterns were correlated to the
concentration level and activity of specific SF genes, especially in cancer [5]. For instance, a
previously published work reported a significant association between SF genes and their
ER status in different BC subtypes, and their correlation with clinical phenotypes, such as
tumor aggressiveness, metastasis, and survival was investigated [43]. The overlap with
this study showed that the expression of 76 SFs is also modulated by apoERα (Supple-
mentary Materials Table S10c). In particular, apoERα silencing repressed the expression of
epithelial-specific RBP genes, including the PHD finger protein 5A (PHF5A), previously
identified as an oncogene frequently upregulated and associated with poor survival in
BC [44]. Knocking down this gene significantly suppressed cell proliferation and increased
apoptotic signalling by promoting the expression of a short, truncated Fas-activated ser-
ine/threonine kinase isoform, enabling Fas-mediated apoptosis in BC cells [44]. Another
apoERα-modulated RBP gene is the nucleolar-related dyskerin pseudouridine synthase
1 (DKC1) gene, reported as a prognostic marker in BC patients that is associated with poor
patient outcomes [45]. DKC1 overexpression conferred a more aggressive phenotype and
increased intrinsic ribosomal activity in cells derived from normal breast epithelium [46].

Furthermore, apoERα depletion caused a significant downregulation of several SF
genes related to the epithelial phenotype. For example, ESRP1 and ESRP2 genes are the
core regulators of AS in epithelial cells and play a crucial role during EMT [23,24,47]. Other
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examples of downregulated SF genes are the muscleblind-like 1 (MBNL1) gene that acts
as a tumor suppressor in BC [48] by controlling AS, translation, and RNA decay through
binding at 3′UTRs [49,50]. Similarly, apoERα silencing decreased the expression of the
MBNL3 gene, which is downregulated during the EMT of epithelial BC cells [23,51]. The
expression of the transformer 2 beta homolog (TRA2B) gene, an oncogene in BC acting on
the splicing pattern of the CD44 gene involved in EMT [52], also decreased in our data. On
the other hand, apoERα downregulation corresponds with an increased expression of 30 SF
genes that were previously reported to be expressed at a higher level in the mesenchymal
phenotype in BC [23]. This includes the cytoplasmic polyadenylation element binding
proteins 1 (CPEB1) gene (the top significant DE SF gene in our dataset), 2 (CPEB2), and
4 (CPEB4); and the eukaryotic translation initiation factor 4E family member 3 (EIF4E) gene,
which are essential factors for RNA translation through the control of the polyadenylation
tails and the 3′UTR length of EMT- and metastasis-related genes [53]. Similarly, a significant
increase was also observed in the expression of the splicing factor 3b subunit 1 (SF3B1),
which is frequently mutated in Erα+ BCs and is associated with aberrant splicing and
a poor prognosis in BC patients [54,55]. ApoERα silencing also induced the expression
of QKI, the KH domain containing the RNA binding (QKI) gene, which is an RBP that
regulates the expression of linear and circular RNA transcripts during EMT in human
mammary epithelial cells [25]. QKI was also found to correlate with the expression of
EMT markers and its high expression was associated with worse overall and disease-free
survival times in BC patients [56]. Taken together, our findings confirm the crucial role of
apoERα activity in maintaining the luminal epithelial phenotype in BC by promoting the
expression of epithelial SF genes and preventing the expression of mesenchymal SF genes.

Notably, apoERα could regulate several SFs acting at the splicing level, as suggested
by significant isoform changes in 20 SF genes. Interestingly, the exploration of a recent ERα
HITS-CLIP sequencing dataset [19] revealed that genes involved in 227 (27.52%) apoERα-
modulated ASEs possess at least one ERα CLIP peak mapped within their gene bodies
(Supplementary Materials Table S8). Interestingly, among these, 28 ASEs showed an ERα
CLIP peak located in the vicinity of the differentially spliced region. Among these ASEs, six
concerning events involving SFs (SAMD4A, CELF1, QKI, ZC3H14, SF1, and SRSF10) were
correlated with ERα mRNA levels in primary tumors, whose binding motifs were enriched
in the apoERα-modulated ASEs (Supplementary Materials Tables S6 and S7). A group
of 18 RBPs not included in the RBP-binding motif enrichment analysis were significantly
correlated with ERα mRNA levels in primary tumors, as well as exhibiting significant AS
changes upon apoERα depletion, and their differentially spliced regions overlapped with
ERα CLIP peaks (Supplementary Materials Table S8). In particular, SAMD4A, which is
a conserved RBP across mammals that controls gene translation and stability, has been
recently reported as a BC suppressor. Specifically, it destabilizes the expression of proan-
giogenic transcripts by physically interacting with the stem loop structure in their 3′UTR
through its sterile alpha motif (SAM) domain [57]. Moreover, we show here that SAMD4A
is negatively correlated (r = −0.44, p < 0.0001) with ERα mRNA levels in ERα+ BCs, and
accordingly, it was reported to be repressed in BC tissues and cancer cell lines where its low
expression is associated with the poor survival of patients and its overexpression inhibited
tumor angiogenesis and cancer progression [57]. Another EMT regulator RBP, QKI, is
repressed by apoERα and negatively correlated (r = −0.37; p < 0.0001) with ERα mRNA
levels in Erα+ BCs, as previously reported [58]. Cao et al. showed that QKI suppresses BC
progression by binding to the RASA1 transcript and thus increases its mRNA stability, as
well as inactivating the MAPK signaling pathway [58]. Noticeably, we took the advantage
of our previously published work of an extensive analysis of ERα genomic distribution and
regulated genes in MCF-7 cells under different culture conditions [59]. Considering the
apoERα chromatin binding sites identified in that study (Supplementary Materials Table
S11a), we found that among the apoERα-regulated RBP/SF genes, 23 showed an apoERα
peak in the vicinity of their promoters (Supplementary Materials Table S11b) and 176 RBPs
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overlapped with the ERα peak at distal binding sites located 20 kb and 100 kb from the
transcription start sites (Supplementary Materials Table S11c,d).

Moreover, an isoform switching analysis revealed the different aspects of RNA pro-
cessing modulated by apoERα, particularly ES and 3′end processing. The functional
importance of such mechanisms has been previously reported as a recurrent event in-
volved in cancer development and progression [60], as well as in epithelial BC cells under
EMT-inducing treatments [61,62]. Indeed, recent studies showed that 3′UTR length differs
among ERα+ and ERα- BC subtypes and that 3′UTR shortening events contribute to tu-
mor growth by interfering with the stability of an endogenous competitive RNA (ceRNA)
network in ERα- tumors, especially in association with the aggressive and metastatic phe-
notypes [63]. In line with previous research, silencing apoERα induced a global 3′UTR
lengthening, rather than shortening events [63]. Importantly, genes with a 3′UTR length-
ening event were significantly enriched in terms of the regulation of the cellular response
to stress, the DNA checkpoint, the positive regulation of the cell cycle, the cell junction
organization, and the protein localization to the membrane. A particular example of
apoERα-mediated 3′end processing is the isoform switching event in CELF1 isoforms,
which resulted in the upregulation of the isoform with a shorter 3′UTR and the downreg-
ulation of the isoform with the longer 3′UTR. Noticeably, although no regulation at the
gene level was observed, four CELF1 isoforms were regulated and responded in opposite
directions to apoERα silencing, which explains the overall change at the gene level. Strik-
ingly, the analysis of ChIP-seq data revealed that the spliced-out region of CELF1 transcript
overlapped with the binding of several TFs, including ERα, CTCF, TRIM24, SPDEF, AHR,
DNMT3A, RARG, and TP63 (Supplementary Materials Figure S6), most of which are DE
upon apoERα depletion in MCF-7 cells. Moreover, the switching CELF1 isoforms encoded
two protein isoforms that differred in their sequence by a hydrophobic alanine residue
at position 104, which overlapped with a splice site [64]. Interestingly, the RBP-binding
motif enrichment analysis revealed an enrichment of the CELF1 binding motif in 320 ASEs,
particularly represented by ES events (Supplementary Materials Table S9a). Moreover, pre-
dicted binding sites on 179 apoERα-regulated ASEs overlapped with CELF1 binding peaks
reported by a CLIP-Seq experiment in Hela cells (Supplementary Materials Table S9b) [65].
The genomic distribution of the predicted CELF1 binding sites on our list of ASEs revealed
that there were about twice as many intronic than exonic bindings of CELF1, in line with
the genomic distribution of the binding clusters [65]. Thus, apoERα-mediated regulation
of CELF1 at the isoform level could explain, in part, the observed AS changes identified in
our dataset. Furthermore, Le Tonquèze et al. identified a high number of CELF1 binding
sites within the 3′UTR regions of the target transcripts, one of the significantly regulated
events in our dataset. We identified that 69 genes showing 3′UTR shortening/lengthening
events overlapped with the binding sites on 3′UTRs identified by the CLIP-Seq experiment
in Hela cells [65], further suggesting that CELF1 could be involved in the splicing-level
events identified in our dataset.

Interestingly, a number of apoERα-modulated ASEs were confirmed to be differen-
tially spliced in BC samples. For instance, the top significant ASE regulated in MCF-7 cells
corresponded to the ES of the 7th exon of the amyloid beta precursor-like protein 2 (APLP2).
The same exon was previously reported by AS-sensitive microarrays to be differentially
spliced between MCF-7 and MDA-MB-231, or human mammary epithelial cells (HMEC),
showing a higher inclusion level in MCF-7 as compared to other cell lines [66].

The association analysis of the identified apoERα-modulated ASEs with BC clinical
outcomes revealed a number of events that were significantly associated with the OS and
DFS of ERα+ BC patients. In particular, the ASEs involving exons E3, E4, and E6 in the
COL6A3 gene showed a positive association with patient OS and DFS in ERα+ BC patients.
The COL6A3 gene encodes the α3 chain of the COL6 protein and is formed by a short triple
helical (TH) non-collagenous domain of 200 repeating amino acids, 5 C-terminal domains
(C1–C5), and 10 (N1-N10) tandem globular N-terminal modules like the von Willebrand
factor type A (vWF-A) domain, each encoded by a single exon. The tumor-specific AS of E3,
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E4, and E6 resulted in the production of protein isoforms either including or lacking the N7,
N9, or N10 domains. The expression of the three exons (E3, E4, and E6) was tumor-specific
in different cancer types and was associated with the patient’s clinical outcome [67–69]. In
colorectal cancer, higher inclusion levels of the E5-E6 junction were specifically associated
with better OS [68]. In line with these studies, we confirmed an increased inclusion of these
three exons in ERα+ BCs and provided further evidence on its association with OS.

4. Materials and Methods
4.1. RNA-Seq Read Preprocessing, Alignment, and Expression Quantification

Raw reads were assessed for Phred quality scores using the FASTQC program
(https://www.bioinformatics.babraham.ac.uk/projects/fastqc/, accessed date 1 January
2021), and low bases and adaptor sequences were trimmed off using Fqtrim (http://ccb.
jhu.edu/software/fqtrim/, accessed date 1 January 2021) retaining reads of 76 bp length
only. Then, clean reads were aligned against the human reference genome (GRCh38.p10)
with Gencode v27 annotation (gencode.v27.annotation.gtf.gz) using STAR v2.5.1b [70].
STAR was run in a two-pass mode, allowing an alignment to the transcriptome coordinates
by setting the option –quantMode to TranscriptomeSAM. Summary statistics of read align-
ments are given in Supplementary Materials Table S2. The expression levels in read counts,
(Transcript per million fragments mapped) TPM, and (Fragments Per Kilobase of exon per
Million mapped reads) FPKM units were then estimated at both gene and isoform levels
by running RSEM [71] on the alignment files in default parameters.

4.2. The Differential Expression Analysis

Differentially expressed genes and isoforms in apoERα silencing, as compared to
the control condition, were identified using the DESeq2 R package (v1.26.0) with default
parameters [72]. The expression at the isoform level was summarized to the gene level using
the tx-import bioconductor package [37] and the resulting count matrices were provided to
DESeq2. Prior to the DE analysis, genes and isoforms with a low expression were discarded
from the analysis and only genes or isoforms with more than 10 normalized read counts
in at least one condition (3 out of 6 samples) were considered for further downstream
analyses. A gene or isoform was considered as differentially expressed if its associated
BH-adjusted p-value was < 0.05. All data visualization plots were made using the ggplot2
R package (v.3.2.1) [73]. Raw and processed RNA-seq data were previously deposited at
GSE108693.

4.3. The Gene Ontology Enrichment Analysis

The gene ontology terms enriched for up-regulated and down-regulated genes were
obtained using the Gene Annotation and Analysis Resource Metascape program [74]. The
list of up-regulated and down-regulated genes were analyzed separately and using the
Single List Analysis option. The statistically enriched GO terms related to each category of
genes were obtained from the GO Biological Processes. Only terms that were associated
with an enrichment factor >1.5 and an accumulative hypergeometric test adj. p-value < 0.05
were considered significant. To reduce redundancy, the GO terms showing a high number
of overlapping genes and a large degree of redundancies were clustered into groups
based on their degree of similarities and each group or cluster was represented by the top
significant GO term. The top 20 significant clusters were selected for visualization purposes.

4.4. The Isoform Switching Analysis

To test for isoform switching events, the IsoformSwitchAnalyzeR tool was applied [75].
Briefly, from the RNA-seq data, the tool takes isoform expression levels quantified in
TPM units normalized to transcript length as inputs, and then calculates an isoform
fraction (IF) ratio by dividing the isoform expression with the expression of the parent gene
(TPMiso/TPMgene). Expressed genes with less than 1 TPM and expressed isoforms that did
not contribute to the expression of the gene (IF < 0.01) were excluded from downstream
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analyses. The IF was then calculated per each of the remaining isoforms and per condition.
For each isoform, a dIF (IFsilencing−IFcontrol) representing the difference in isoform usage
between the two conditions was calculated. A cut-off criterion was applied by selecting
only those isoforms for which apoERα silencing induced a significant change (BH-corrected
p-value ≤ 0.05) in IF by at least 10% (i.e., |dIF| > 0.1). Next, the sequences of isoforms
showing significant switching events upon apoERα silencing were extracted and annotated
for the presence of signal peptide sequences, coding potential, and for their associated
pfam protein domains. The biological consequences of the observed switches, including
IR, domain gain/loss, coding/non-coding potential, and the shortening/lengthening of
the open reading frame were then evaluated for the switching of isoforms from the same
parent gene. Next, according to the applied annotation on the switching isoforms, genes
were classified into genes with or without downstream functional consequences.

4.5. The Differential Alternative Splicing Analysis

The list of differentially regulated AS events upon apoERα silencing were identified
using rMATS [76,77]. All the sequences and annotations used in this analysis were based
on GRCh38 genome assembly and Gencode v27 annotation. To ensure the quantification
of expressed events, a prefiltering criteria was applied by only considering those splicing
events whose supporting reads were at least 10 in at least two samples per condition. In
addition, a splicing event with a ∆PSI value between the silencing and control conditions
of less than 5% (|∆PSI| < 0.05) or that was associated with adj p-value of > 0.05 were
excluded from the downstream analysis.

4.6. The RBP Binding Motif Enrichment Analysis

To identify RNA-binding proteins as putative regulators of the observed changes in
each splicing event identified, the sequences of the regulated ASEs extended± 200 nucleotides
on both sides were scanned for the occurrence of RBP binding motifs. In case of MX events,
the regions involved in ASEs were extended on both sides by 100 nucleotides only. The
RNA binding motifs for 105 different splicing factors were collected from the RNAcompete
study [78]. Next, the MoSEA package was used to search the sequence of the ASEs for the
occurrence of RBP binding motifs [29]. The tool FIMO [79] was used to scan the sequences
of the ASEs for the presence of the RBP motifs using a p-value < 0.001 as a cut-off. The
binding motif enrichment was performed by comparing the number of occurrences of
the binding motifs of the RBPs in the regulated ASEs with that observed in a pool of 100
randomly selected sequences of the same size from equivalent regions in non-regulated
ASEs (|∆PSI| < 0.01 and p > 0.05). Motif enrichment was performed separately for the
two directions of splicing changes (∆PSI > 0.05 or ∆PSI < −0.05). An enrichment z-score
per RNA binding motif, region, and direction of regulation was calculated by normalizing
the observed frequency in the regulated ASEs set with the mean and standard deviation
of the 100 random control sets. The 100 random control sequences were sampled from
non-regulated ASEs for each region of regulation. An RBP was considered as enriched if it
was associated with a z-score of > 1.96.

4.7. An Overlap with Alternative Splicing Events in Primary Tumor Data

The analysis of ASEs in BC tissues was performed considering the annotations from
SpliceSeq [80]. This database reports the PSI values of different ASEs detected in the
RNA-Seq data from TCGA. Specifically, the analysis was performed by retrieving all the
PSI values of TCGA BRCA cohort from the database website (http://projects.insilico.us.
com/TCGASpliceSeq/, accessed date 2 April 2021). Then, the ASE coordinates from the
database were converted to hg38 assembly using Liftover (https://genome.ucsc.edu/cgi-
bin/hgLiftOver, accessed date 2 April 2021) and overlapped with the ASE coordinates from
the rMATS analysis. A Spearman correlation analysis was performed to evaluate the rela-
tionship between ESR1 in FPKM and the PSI value associated with each ASE. A Wilcoxon
rank-sum test was performed to evaluate the differences in PSI value distributions between
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data from patients divided by ESR1 expression levels, by ERα+ and ERα- BCs, or by Erα+
BCs and normal breast tissue. A correlation analysis between the ASE inclusion/exclusion
levels and signaling pathways from the MSigDB hallmark gene sets was performed using
PEGASAS in default settings [35].

A survival analysis was performed by collecting OS and DFS information of 773 ERα+
samples from TCGA GDC portal [28], together with PSI values of the analyzed ASEs from
the TCGASpliceSeq database [34]. Samples with a PSI value greater than the median were
classified as a high expression of the ASE, and samples with a PSI value less than this
threshold were classified as a low expression of the ASE. The analysis was performed using
the survival v3.2.11 R package.

4.8. The Correlation Analysis between ERα mRNA Levels and RNA-Binding Proteins Encoding
Genes in ERα+ Breast Tumor Samples

The analysis of the correlation between ERα mRNA levels and that of RBP genes in 773
ERα+ samples was performed retrieving the illuminahisep_rnaseqv2-RSEM_genes_normalized
dataset and clinical data (BRCA.clin.merged.txt) from the BROAD GDAC Firehose
(https://gdac.broadinstitute.org/, accessed date 10 July 2021) database. Prior to calcu-
lating the correlation coefficient of the ERα and RBP genes’ mRNA levels, gene read counts
were log2 transformed. A GO enrichment analysis was performed separately for correlating
and anti-correlating RBPs using metascape [74]. The correlation between ERα and selected
RBPs was represented as a scatterplot using the ggplot2 R bioconductor package [73].

4.9. The Overlap with ERα HITS-CLIP Data

The overlap with ERα HITS-CLIP data from previous research was performed con-
sidering the genomic coordinates of CLIP peaks provided as Supplementary Materials
of the manuscript, which was converted from the hg19 to hg38 genome assembly using
Liftover [19]. Then, the CLIP peak coordinates were overlapped with the genomic region
spanning genes involved in ASEs, or with the region spanning the exons involved. This
region was extended by +/− 200 bp as for the RBP motif enrichment analysis.

5. Conclusions

In this work, we unravel a novel layer of gene expression regulation mediated by
ERα. First, among apoERα-regulated genes, there is a significant number of RNA binding
proteins and splicing factors. Second, this was paralleled by significant changes at the level
of the alternative splicing of many transcripts. Third, we observed that these changes are
not limited to MCF-7 cells, but are also detectable in primary breast tumors, as correlated
with Erα mRNA levels. Thus, we foresee that this novel feature should be considered
when studying the functional roles of Erα in the onset and progression of BC. To fully
decipher the mechanisms in which Erα is directly or indirectly involved, further studies are
necessary, especially in the light of the recent discovery that ERα is itself an RBP. How the
basal activity of ERα is modulated by hormones, antagonists, and kinase cascades should
be addressed by HITS-CLIP and functional studies.

On the other hand, our computational approach is particularly interesting in identi-
fying isoform level changes that are not observed when considering the gene level and
provides a way to predict the downstream functional consequences of these changes at the
protein isoform level.

Supplementary Materials: Supplementary materials can be found at https://www.mdpi.com/
article/10.3390/cancers13246261/s1. Supplementary Materials Figure S1: The transcriptional effects
of apoERα depletion in hormone-starved MCF-7 BC cells; Supplementary Materials Figure S2: gene
expression changes in apoERα-regulated SFs; Supplementary Materials Figure S3: Selected example
genes with switching isoform pairs upon apoERα activity depletion in MCF-7 cells; Supplementary
Materials Figure S4: Overlaps between apoERα-regulated ASEs in this study and those in GSE30290
and GSE75492 studies. Supplementary Materials Figure S5: Overview of the RBP-binding motifs
enrichment analysis performed on ASEs reported upon apoERα depletion in MCF-7 cells; Supple-
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mentary Materials Figure S6: Screenshot of the integrative genome viewer (IGV) reporting ChIP-Seq
binding peaks of selected TFs including ERα, SPDEF, CTCF, and GATA3, showing a binding peak
at the body and 3′UTR region of CELF1 in MCF-7 BC cells under full medium (FM), vehicle (Veh),
or under estrogen (E2) treatment. Supplementary Materials Table S1: results from the differential
gene expression (dGE) analysis between siERα and siCTRL conditions; Supplementary Materials
Table S2: results of RBPs gene differential expression analysis between siERα and siCTRL conditions
and their overlap with GSE30290 and GSE75492 studies; Supplementary Materials Table S3: results
from differential isoform usage (dIU) analysis between siERα and siCTRL conditions; Supplementary
Materials Table S4: results from differential alternative splicing analysis between siERα and siCTRL
conditions; Supplementary Materials Table S5: table of the overlapping ASEs between this study and
both GSE30290 and GSE75492 studies; Supplementary Materials Table S6: results of the RBP-binding
motif enrichment analysis; Supplementary Materials Table S7: results of the overlap between ERα
HITS-CLIP peaks and the regions involved in apoERα-modulated ASEs; Supplementary Materials
Table S8: results from the analysis of apoERα-modulated ASEs in primary tumor samples; Supple-
mentary Materials Table S9: results from the analysis of the overlap between CELF1 CLIP-seq peaks
and apoERα-modulated ASEs. Supplementary Materials Table S10: overlap of apoERα-regulated
RBP genes with Keodoot et al. study [43]. Supplementary Materials Table S11: ER ChIP-Seq data
analysis for direct RBP gene targets identification.
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