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Abstract. Multiple Sclerosis (MS) is a chronic and potentially highly
disabling disease that can cause permanent damage and deterioration
of the central nervous system. In Europe it is the leading cause of non-
traumatic disabilities in young adults, since more than 700,000 EU peo-
ple suffer from MS. Although recent studies on MS pathophysiology have
been performed, providing interesting results, MS remains a challenging
disease. In this context, thanks to recent advances in software and hard-
ware technologies, computational models and computer simulations are
becoming appealing research tools to support scientists in the study of
such disease. Motivated by this consideration, we propose in this paper
a new model to study the evolution of MS in silico, and the effects of the
administration of the daclizumab drug, taking into account also spatial-
ity and temporality of the involved phenomena. Moreover, we show how
the intrinsic symmetries of the model we have developed can be exploited
to drastically reduce the complexity of its analysis.
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1 Introduction

Multiple Sclerosis (MS) is a long-term and autoimmune disease of the
Central Nervous System (CNS). During the progression of the dis-



ease, cells of immune system attack the principal components of the
CNS, the neurons, removing the enveloping myelin and preventing
the efficient transmission of the nervous signals. Relapsing-Remitting
MS (RRMS) is the predominant type of MS since it is diagnosed in
about 85% — 90% of MS cases [12]. In RRMS, the disease alternates
two phases: (1) relapse phase is characterized by a disease worsening
due to the active inflammation damaging the neurons; (2) in the re-
mission phase there is a complete or partial lack of the symptoms [7].
Recently, many treatments were proposed and studied to contrast
the RRMS progression. Among these drugs, daclizumab [4] (commer-
cial name Zynbrita), an antibody tailored against the Interleukin-2
receptor (IL2R) of T cells, exhibited promising results. Unfortu-
nately, its efficacy was accompanied by an increased frequency of
serious adverse events as infections, encephalitis, and liver damages.
For these reasons daclizumab has been withdrawn from the market
worldwide.

In [11] we proposed a model to investigate the effect of the da-
clizumab administration in RRMS. It involves the following seven
main actors of MS: Epstain-Barr virus (EBV), Effector T lympho-
cytes cells (Teff), Regulatory T lymphocytes cells (Treg), Natural
Killer cells (NK), Oligodentrocytes cells (ODC), Interleukin-2 (IL2)
and daclizumab (DAC). In details, the EBV was considered since
several studies [13] commonly agree on the hypothesis that viruses
may play a role in RRMS pathogenesis acting as environmental trig-
gers, and in particular the presence of this virus represents a well
established risk factor in MS [8]. Effector T cells (Teff) are instead
immune cells with a protective role against pathogens in healthy peo-
ple. However, in RRMS a hypothesis is that the reactivation of EBV
latent infection could bring to the activation of autologous Teff lym-
phocytes against myelin, due to a structure similarity between one
viral protein and myelin protein (molecular mimicry). Regulatory
T cells (Treg) are immune cells acting as balancing of the immune
response since they contribute to suppress and modulate the Teff
cells activity when no longer needed, or when there is a high risk
of inflammation that can cause injuries to the tissues of the host.
Other important actors within this context are the natural killer
(NK) cells, a family of immune cells that acts as host-rejection of
infected cells. Oligodendrocytes (ODC) are instead cells supporting



the neurons since they produce and are able to partially restore the
myelin around the neurons whenever a not excessive damage occurs.
IL2 is an immunomodulatory cytokine released by Teff in order to
self-stimulate to duplicate and to propagate their immune actions.
Finally, we included in the model the drug daclizumab, a humanized
monoclonal antibody used in MS as drug against the Interleukin-2
receptor (IL2R) that is able to break the autoimmune reaction by
suppressing the immune cells proliferation [4].

Thus, to help scientists in improving their knowledge of these
phenomena, in this work we extend the RRMS models presented
in [11] considering the cells movement into a three-dimensional
grid. In details, in this paper we show how the use of a graphi-
cal formalism, i.e. the Extended Stochastic Symmetric Net (ESSN)
formalism [10, 11], allows to easily deal with this complex three-
dimensional model whose direct definition in terms of ODE system
becomes clearly unfeasible even for a small three-dimensional grid.
Indeed, for instance considering three-dimensional grid with dimen-
sion 3 X 3 x 3 the ESSN model is a bipartite graph with only 38
nodes (i.e. 13 places and 25 transitions) and approximately 90 arcs,
while its underlying deterministic process comprises 433 ODEs.
Moreover, the high level of parametrization and flexibility provided
in the model through this graphical formalism enables to study dif-
ferent grid dimensions in a fairly easy manner and without the need
of redrawing the whole model. Similarly, in the analysis phase the
ESSN model provides a powerful methodology that automatically
exploits the system symmetries to reduce the complexity (in terms
of number of equations) of the underlying deterministic process. In-
deed in [2] we proposed an algorithm that directly derives a compact
ODE system from a ESSN model in a symbolic way, through alge-
braic manipulation of ESSN annotations.

2 Scientific background

In this section we introduce the Petri Nets (PNs) formalism used
to describe our model. PNs and their extensions are effective for-
malisms to model biological systems thanks to their capability of
representing in a simple and clear manner the system features and



to provide efficient techniques to derive system qualitative and quan-
titative properties. In details, PNs are bipartite directed graphs with
two types of nodes called places and transitions. Places, graphically
represented as circles, correspond to the state variables of the sys-
tem, while transitions, graphically represented as boxes, correspond
to the events that can induce a state change. The arcs connecting
places to transitions (and vice versa) express the relations between
states and event occurrences. Places can contain tokens, drawn as
black dots. The state of a PN, namely a marking, is defined by the
number of tokens in each place. The system evolution is provided
by the firing of an enabled transition, where a transition is enabled
if and only if each input place contains a number of tokens greater
than or equal to a given threshold defined by the cardinality of the
corresponding input arc. The firing of an enabled transition removes
a fixed number of tokens from its input places and adds a fixed num-
ber of tokens into its output places (according to the cardinality of
its input/output arcs).

In this work we focus on Stochastic Symmetric Nets (SSNs) a
high level formalism that extends PNs with colors and stochastic
firing delays [6]. Colors provide a more compact, readable and para-
metric representation of the system thanks to the possibility of hav-
ing tokens with different characteristics.

More specifically, the color domain associated with place p, de-
noted cd(p), specifies the color of the tokens contained in this place,
whereas the color domain of a transition defines the different ways
of firing it (i.e. the possible transition instances). In order to specify
these firings, a color function is attached to each arc which, given
a color of the transition connected to the arc, determines the num-
ber of colored tokens that will be added to or removed from the
corresponding place. A color domain is defined as Cartesian prod-
uct of color classes which may be viewed as primitive domains. A
color class can be partitioned into static subclasses. The colors of
a class have the same nature (e.g. T cells), whereas the colors in-
side a static subclass have the same potential behavior (e.g. Teff).
Stochastic firing delays, sampled from negative exponential distri-
butions, allow to automatically derive the underlying Continuous
Time Markov Chain (CTMC) that can be studied to quantitatively
evaluate the system behaviour. In the literature, different techniques



are proposed to solve the underlying CTMC; in particular, in case of
very complex models, the so-called deterministic approach [9] can be
efficiently exploited. According to this, in [3] we proposed a method
to derive a deterministic process, described through a system of Or-
dinary Differential Equations (ODEs), which well approximates the
stochastic behavior of an SSN model assuming all reactions follow
the Mass Action (MA) law. In the same paper we also described an
efficient translation method based on the SSN formalism, which is
able to reduce the size (in terms of equations number) of the un-
derlying ODE system through the automatic exploitation of system
symmetries. Practically, the complete set of ODEs, which can be de-
rived from an SSN model is partitioned into equivalence classes of
ODEs which have same solution so that a representative equation,
called symbolic equation, can be pointed out for each equivalence
class. Then, a reduced ODE system may be derived including only
these symbolic equations whose solution mimics the behavior of the
original model. Recently this result was further improved in [2] where
a new algorithm is discussed to generate the symbolic equation for
each equivalence class of ODEs without deriving the complete ODE
system. This is achieved thanks to a recent extension of a symbolic
calculus for the computation of SSN structural properties [5].
Furthermore, in [11] we introduced the Extended SSNs (ESSNs) to
deal with more complex biological laws splitting the set T of all the
transitions of the model into two subsets: T, and Tj,. The former
subset contains transitions (that are called standard) whose rates
are specified as MA laws. The latter includes instead all the transi-
tions (that are called general) whose random firing times have rates
that are defined by means of general real functions. In our definition,
we assumed that the general function associated with a transition
t € Ty is a real function which depends only on time and on the in-
put places of t. So, if =, .(v) represents the average number of tokens
of color ¢ in the place p at time v, then the rate at which the in-
stance (t,¢, ), t € T, will move tokens with color ¢ in place z, (V)
is given by fu .oy (2(v),v), where Z(v) is the vector characterized by
the average number of tokens of the input places of transition t¢.
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Fig.1: a) Representation of the three-dimensional model. b) The
ESSN model.

3 Materials and Methods

In this section, we report our extension of the Relapsing-Remitting
Multiple Sclerosis (RRMS) model defined with the ESSN formal-
ism and originally presented in [11] assuming that the cells may
move within a cubic grid. In Fig. 1a) is depicted a portion of the
CNS, showing: the neuron with its myelin sheath, and the 7 ele-
ments characterizing the MS disease distributed within a 3D cubic
grid. The respective ESSN model is shown in Fig. 1b), consisting
of 13 places and 25 transitions. For the sake of clarity, the white
transitions are standard transitions, while the black ones are general
transitions. This model is organized in seven modules correspond-
ing to the biological entities characterizing RRMS. Briefly, the EBV
module simulates the virus reactivation by means of a series of in-
jections of virus particles in the system at given times, while the
Treg and Teff modules encode the activation of the T cells, the an-



nihilation of the virus by the Teff action, the control mechanism of
the Treg over the Teff. The NK module describes the killing of self-
reactive Teff and Treg cells respectively, due to NK cells. The L2
module is focused on the IL2 role. IL2 is consumed by the Treg, Teff
and NK functions and it is produced by the Teff activation. The
ODC module describes instead the ODC behaviour, characterized
particularly by the damage caused by Teff cells on ODC cells. In-
deed, when the myelin level reaches the lowest value, an irreversible
damage occurs and a remyelination of the neurons is no more possi-
ble. Finally, the DAC module encodes the drug administration and
its pharmacokinetics inhibition of the expansion of Treg and Teff.

The model is characterized by four color classes: PosX, PosY, and
PosZ representing the coordinates of the position of a molecule in
a 3D cubic grid; Mye encoding the myelination levels of ODC. Mye
is divided into five static subclasses ranging from Lmin (no myeli-
nation) to Lmaz (full myelination). Then, all the places except the
ODC and EffectorMemory are characterized by the color domain de-
fined as Pos3D = PosX x PosY x PosZ, i.e. the three-dimensional
Cartesian product of the three coordinates color classes. Instead, the
ODC place is characterized by the three coordinates plus the myeli-
nation levels, so that its color domain is Pos3D x Mye. Finally, the
EffectorMemory place has neutral color domain. Moreover, we as-
sume that the EBV, Teff, Treg and DAC cells are able to move in
all the cubic cells of the grid. Practically, the EBVs move uniformly
in all the cells, the Teff cells move with higher probability towards a
location in which there is higher concentration of EBV, and Treg and
DAC cells move with higher probability towards a location in which
there is higher concentration of Teff cells. Hereafter, the notation of
the color combinations (p,,py,p.) and (qs,qy, ¢.), representing the
location coordinates, is simplified to (p) and (q), respectively. In
particular, we define TCellType ) BS the number of CellType in the
location (p) at a specific time point. Hence, the movement func-
tions can be defined as follows. The transition EBVMovement
simulates the movements of EBV cells from point (with coordinates
represented by the color combination) (p) to point (q). The speed of
this movement (the rate of transition EBVMovement) is uniform in
all directions and is captured in the following formula by assuming



that the probability to move is equally distributed among all the
grid cells.

f(EBVMovement,p,q) (:il(y)a V) = Tmoves * p%)gv * xEBV<p>

where 7,,00es 18 a coefficient that we set equal to 0.1 in our numerical
experiments. Differently, the transition TeffMovement simulates
the movement of Teff cells from point (p) to point (q), and its speed
is inversely related to the number of EBV cells in (p) (since more the
virus in (p) less the Teff cells are tempted to leave the position) and
depends on the number of EBV in (q) (a greater number of EBV
cells leads to a higher probability to move into that location). This
is captured by the following formula

TEBVig)

f{TeffMovement,p,q) (:f;(]/), V) =Tmoves * (exp(_ )) * pz;;ff * xTeff<p>

EBV

where 7,,,,¢5 18 again set equal to 0.1; the second term of the function,

$E3v< )

defined as exp(— ), varies in the interval [1,0), simulating the

Cepy
decreasing of the movement velocity with respect to the number of
TEBV(q)

EBV;&ot
the probability to move in the cell with coordinates (q) where F BV},

is the total number of EBV in the grid at time v; and Cgpy is an
experimental constant that we set equal to 1000. All these quantities
are functions of the time v which is omitted in the formula to keep
the notation simpler.
Transitions TregMovement and DA CMovement represent the
movements of the Treg and DAC cells (respectively) from point (p)
to point (q). Similarly to what explained for transition TeffMove-
ment, their speeds are inversely related to the number of Teff and T
(= Treg+Teff) cells in (p) and depend on the number of Teffs and T's
in (q). The detailed expressions of the formulas that encode the firing
rate dependencies for these two transitions, with the information re-
garding all the transitions and the files exploited thorough this study,
are freely available at https://github.com/qBioTurin/ESSNandRRMS
/tree/master /DeterministicModel /Multidimensional.

We exploited the GreatSPN tool [1] to develop the ESSN model
Fig. 1b), in particular the corresponding system of ODEs is auto-
matically generated from the ESSN model using the C/C++ mod-

EBV cells present in the starting point; p<Tq€>f F = represents



ule PN20ODE embedded in GreatSPN. In details, the ODEs sys-
tem is defined by one equation for each pair (p,c), where p is a
place and ¢ € cd(p) is a color which encodes a coordinate in the
3D grid, plus the myelination level (the latter only in place ODC).
Differently, the system of SODE has been generated with the SNe-
spression tool (http://di.unito.it/~depierro/SNexpression) and inte-
grated with the definition of the functions for the general transitions
and the initial marking. In this case there is one equation for each
pair (p, ¢), where p is a place and ¢ corresponds to a subset of cd(p)
with equivalent behavior. The SODE for a given ¢ is representative
of all ODEs in the unfolded system for all ¢ € ¢. The identifica-
tion of the equivalence classes in cd(p) and of the generation of the
representative SODE is completely automatized.

4 Results

In this work we studied the RRMS considering a tissue portion ex-
plicitly modeled through a cubic grid consisting of 27 cubic cells
(Fig. 1a) ). To achieve this, we defined the color classes PosX =
{z;1,20,25}, PosY = {y;,vys,ys} and PosZ = {z;,zs,23}. For all
the simulations, we assumed 500 ODC with level L,,,, of neuronal
myelinization, 1687 resting Teff cells, 63 resting Treg cells, 375 NK
cells and 1000 IL2 molecules, and zero cells in the other places (for
more details see [11]).

This model is equivalent to a system of 433 ODEs, but with few as-
sumptions it is possible to derive the corresponding reduced ODEs
system including only the symbolic equations. In details, let us define
the set of all the 27 location coordinates as P = {(ps, py, p2), Pz €
PosX,p, € PosY,p, € PosZ}. Then, we consider three disjoint sub-
sets of P, namely P1, P2, P3; the first two correspond to grouping
the EBV and DAC injection locations, respectively, while the third
P3 groups all the remaining locations. For simplicity, and to main-
tain the symmetries into the system as well, the EBV and DAC
injection locations do not change over the simulation time and do
not overlap. Given this, it is possible to derive the symbolic ODEs
(SODESs) system characterized by 49 equations only. Indeed, the 433
original equations can be partitioned into 49 groups of similar equa-
tions. Each group is expressed in the reduced model by one repre-



sentative equation. The grouping derives from the observation that
the behaviors of the modeled elements do not depend on their actual
positions, but only on the presence of the EBV and/or DAC cells.
When the grid size grows the number of groups does not change, as
long as the number of locations where different quantities of EBV
and/or DAC cells appear is fixed; instead the size of each group of
equivalent ODEs increases with the grid size. A further reduction is
represented by the number of terms in each SODE, representative of
each group of ODEs, with respect to the number of terms appearing
in the ODEs in the equivalence class. This reduction is due to the
factorization obtained by exploiting symmetries. Other examples are
reported in Table 1, where the R file dimension and the number of
differential equations of the complete and reduced models are com-
pared considering different cubic grid dimensions, from 3 x 3 x 3 to
5 x 5 x 5. It is easy to see that an increasing number of locations
is associated with an increase in the number of ODEs and of the R
file containing them, while the SODE system does not change. Note
that when the 5 x 5 x 5 grid is considered, the ODEs generation
procedure fails because it exceeds the available memory.

The advantage can also be observed from the point of view of the
simulation time, we obtained a speed up from 8.927205 hours to
12.76043 secs on an Intel Xeon processor @ 2GHz, by using one
core. Note that the simulation was performed considering 3 x 3 x 3
cubic grid, one year interval and assuming EBV injections at regu-
lar times (every two months), and each injection introduces into the
system 10000 EBV copies.

Number of locations |R File dimension ODEs / SODEs |Number of ODEs / SODEs
27 (3x3x3) 0.43 MiB / 0.023 MiB 433 / 49
64 (4x4x4) 5.0 MiB / 0.023 MiB 1025 / 49
125 (5x5x5) Out of memory / 0.023 MiB 2001 / 49

Table 1: Comparing the ODE and SODE system, varying the cubic
grid dimension.

A possible evolution of the system is shown in Fig. 2, where the
red circles represent the location in which EBV is injected. For each
plot, the three rows represent the z-planes and the columns refer to
the time points in which the injections are done. Fixing the time
point and the z-plane, the corresponding 3 x 3 square reports the
number of ODCs damaged into the nine grid cells obtained varying
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Fig. 2: Percentages of ODCs irreversibly damaged a) without and b)
with DAC treatment.

the x and y coordinates. As expected, the panel A of Fig. 2 shows
the progressive accumulation of ODC irreversibly damaged until day
365. Instead, in panel B of Fig. 2 is reported the results of the sim-
ulation of the DAC effect. In details, every month after two months
of simulation, two injections are simulated (green squares) intro-
ducing 300 DAC copies for each administration. These results agree
with those proposed in [11] since the number of irreversibly damaged
ODCs decreases in the case with DAC administration with respect
to the case in which no drug is injected. With DAC the percentage
of irreversibly damaged ODCs ranges from 28% to 45%, while with
no DAC the number of irreversibly damaged ODCs is between 70%
and 85%.

5 Conclusion

In this work we extended the model presented in [11] including the
spatial coordinates of all entities in a cubic tissue portion. This gives
the opportunity to model more realistic scenarios, where different
quantities of virus enter into the system from different directions.
Moreover, we described how the intrinsic symmetries of the de-
rived ESSN model may be automatically exploited to reduce the
complexity of the analysis step. This allows us to study models which
are independent from the grid size, while with the classical approach



it is hard to generate the ODEs system corresponding to the model
with a 5 X 5 x 5 grid.

As further work, we will focus our experiments on the dosage of DAC
and on the representation of the DAC pharmacokinetics in order to
simulate the up taking of DAC by the body, its biotransformation
and the distribution of DAC and its metabolites in the tissues.
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