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Abstract: Multiple sclerosis (MS) is a chronic central nervous system inflammatory disease that leads
to demyelination and neurodegeneration. The third trimester of pregnancy, which is characterized
by high levels of estrogens, has been shown to be associated with reduced relapse rates compared
with the rates before pregnancy. These effects could be related to the anti-inflammatory properties of
estrogens, which orchestrate the reshuffling of the immune system toward immunotolerance to allow
for fetal growth. The action of these hormones is mediated by the transcriptional regulation activity
of estrogen receptors (ERs). Estrogen levels and ER expression define a specific balance of immune
cell types. In this review, we explore the role of estradiol (E2) and ERs in the adaptive immune
system, with a focus on estrogen-mediated cellular, molecular, and epigenetic mechanisms related
to immune tolerance and neuroprotection in MS. The epigenome dynamics of immune systems are
described as key molecular mechanisms that act on the regulation of immune cell identity. This is a
completely unexplored field, suggesting a future path for more extensive research on estrogen-induced
coregulatory complexes and molecular circuitry as targets for therapeutics in MS.

Keywords: multiple sclerosis; adaptive immune system; epigenome; pregnancy; estrogens;
estrogen receptors

1. Introduction

Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous
system (CNS), and is characterized by the infiltration of T lymphocytes, B lymphocytes, macrophages,
and natural killer (NK) cells, as well as demyelination and axonal damage [1]. From experimental
evidence based on murine models and samples from MS patients, the immunological process in the
pathogenesis of MS is currently defined by the following steps. First, autoreactive T cells and B cells
are activated in peripheral lymph nodes and differentiate into effector cells. Among the effector CD4+
T cells, T helper 1 (Thl) and especially Th17 cells play important roles in the pathogenesis of this
disease. Patients with MS have shown increased numbers of these subpopulations in the peripheral
blood [2] and the CNS, mainly in the cerebrospinal fluid and the perivascular space [3-6]. Activated
T and B cells migrate through the blood-brain barrier, the disruption of which characterizes early
stages of the disease, and reach the CNS, where they are further activated by local antigen-presenting
cells. In the CNS, macrophages and activated CD4+ and CD8+ T cells attack myelin components
and produce cytokines and chemokines that recruit other autoreactive cells from peripheral blood.
They also activate B cells, which mature to antibody-producing plasma cells; induce, maintain, and
reactivate CD4+ T cells; and produce proinflammatory cytokines. Overall, these processes increase
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inflammation and cause demyelination and axonal damage. In the advanced stages of the disease, the
inflammatory response is replaced by microglial activation and chronic neurodegeneration [7].

Relapsing-remitting MS (RRMS) is the most common course of MS, and the majority of patients
are initially diagnosed with RRMS. RRMS is characterized by the alternation of relapses and
remissions. After RRMS, most patients transition to a secondary progressive course with the progressive
accumulation of disability [8]. The onset, clinical course, and progression of MS are highly variable and
likely depend on both genetic and environmental factors. However, MS does not show any clear mode
of inheritance, although there is an association between first-degree relatives of patients with multiple
sclerosis [9] and between twins, with the association more common in monozygotic than heterozygotic
twins [10]. Among the predisposing genetic factors, human leukocyte antigens (HLA) in the class II
region, especially the HLA-DRB1*1501 and DQB1*0602 alleles, have been shown to be significantly
associated with MS [11], whereas the HLA class I region HLA-A*02:01 was associated with a protective
effect [12]. Environmental factors, including Epstein—Barr virus (EBV) infection [13,14], smoking [15],
and vitamin D deficiency [16], are known to exert epigenetic changes and have been linked to the risk
of MS. More recently, evidence has suggested that other environmental risk factors for MS include
intestinal microbiota [17] and oral contraceptive therapy [18]. To date, the causes that influence the
development and course of MS are still not clear.

Sex hormones could be one of the factors contributing to MS and could explain the sex inequality
observed in this disease. The proposed role of sex hormones in MS is based on different clinical
observations [19]. Epidemiological studies have shown differences in the prevalence and progression
of the disease between men and women. The relapsing forms of MS are more frequent in young
women [20]; the disease in men usually develops at an older age, with a more severe and progressive
course, possibly in relation to an incipient decline in androgen secretion [21]. Moreover, the relapse rate
decreases during late pregnancy as hormonal secretions increase [22]. This was first shown in 1998 by
the Pregnancy in Multiple Sclerosis (PRIMS) study, which prospectively assessed 254 women with MS
during pregnancy and reported a 70% reduction in the annualized relapse rate in the third trimester
compared with the rate in the year before pregnancy [23,24]. A meta-analysis [25] that included 1221
pregnancies in women with MS showed a significant decrease in the relapse rate during pregnancy.
Moreover, these results were supported by a larger multicenter retrospective study [26]. Furthermore,
in MS patients, estradiol regulates immune responses by regulating the expression and release of
inflammatory and anti-inflammatory cytokines, leading to a regulatory immune response [27]. These
data suggest a potential role of estrogens in MS, although few clinical trials have been completed so far.

In the following sections, we discuss the current knowledge of the relationship between estrogens,
the immune system, and MS from a cellular, molecular, and epigenetic point of view.

2. Estrogens

Estrogens are sex steroid hormones that are present in both men and women, but they circulate at
significantly higher levels in women during reproductive age. Endogenous estrogens include estrone
(E1), 17B-estradiol (E2), and estriol (E3). E2 is the predominant form of estrogen in premenopausal
women, while E3 is mainly produced during pregnancy, together with E2. The level of circulating
estrogens varies during all stages of a woman'’s life, starting from childhood until menopause (Figure 1).
In each of these stages, hormonal changes have fixed influences on the female body. Estrogens primarily
promote the development of female secondary sexual characteristics and regulate the menstrual cycle.
In addition to sexual development, estradiol influences the functionality of various organs and tissues,
including the skin, muscles, adipose tissue, the brain, the cardiovascular system, and bones, and it
actively protects against osteoporosis and various cardiovascular diseases [19]. Even the immune
system is affected by the levels of circulating estrogens, especially during pregnancy, when it reacts
adaptively to establish fetal tolerance [28]. In physiological pregnancy, maternal regulatory T (Treg)
cells expand in both the periphery [29,30] and the placenta, in which they suppress the aggressive
allogeneic response directed against the fetus. The lack of Treg cells leads to failure of gestation



Cells 2019, 8, 1280 30f21

due to the immunological rejection of the fetus [31,32]. Treg cells also have the ability to suppress
autoimmune responses. Indeed, the protective effects of estrogens in MS are believed to partly
result from a combination of estrogen-mediated anti-inflammatory cytokine production and Treg
cell expansion [29,32,33]. During menopause, the risk of autoimmune diseases increases in women.
Older women show a stronger pro-inflammatory response compared to males due to the senescence of
the immune system that leads to a sex-specific low-grade chronic inflammation [34]. The decline of
estrogens’ concentration during menopause correlates with a reduced number of B and T cells and an
increased secretion of pro-inflammatory cytokines [35].
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Figure 1. Estradiol levels in the bloodstream vary throughout a woman’s lifespan. The mean value
during childhood is 200 pg/mL. During fertility age, the menstrual cycle range is 100-400 pg/mL. The
pregnancy condition (highlighted in pink) is characterized by a huge increase in levels of circulating
estradiol from the first trimester to delivery, with a range of 2000-15,000 pg/mL. During menopause,
the level of estrogens drops drastically to <100 pg/mL. Data retrieved from Watson et al., 2010 [36].

Estrogen Receptors

Estrogens act directly, indirectly, or both, and their mode of action depends on the involvement of
their receptors, called estrogen receptors (ERs) [37]. ERs are nuclear steroid receptors that are able to
dimerize upon activation and translocate to the nucleus, where they regulate gene expression. Activated
ERs can bind directly to specific DNA sequences called estrogen response elements (EREs) and act as
transcription factors (TFs) by regulating a broad range of estrogen-responsive genes. Alternatively, ERs
can indirectly bind DNA through protein—protein interactions with other transcription factors [38,39].
In the absence of estrogens, ERs have been shown to bind extensively to the genome of breast cancer
cells and regulate the expression of hundreds of genes with developmental functions [40].

ERs exist in two main forms, ER alpha (ERx) and ER beta (ERf3), which are encoded by the
human genes Estrogen Receptor 1 (ESRI)and Estrogen Receptor 2 (ESR2). ERoc and ERf3 share high
homology, particularly in the DNA binding domain [41]. The general structure of ERx consists of an
N-terminal activation function-1 domain (AF-1), which is followed by a DNA binding domain (DBD),
a dimerization domain, and the ligand binding (LB)/AF-2 domain. The AF domains are responsible
for the recruitment of coregulators; cofactor recruitment by AF-1 is ligand-independent, whereas
cofactor recruitment by AF-2 is ligand-dependent. [42]. Three main different isoforms of ER«, derived
from alternative splicing events, have been described: the full-length 66 kDa ERx (ERx66), the AF-1
domain-truncated 46 kDa variant of ERx (ERa46), and a 36 kDa ER« variant (ERx36) that lacks both
AF-1 and AF-2 domains [43-45] (Figure 2). Similarly, ERp is transcribed from at least two additional
upstream promoters and undergoes alternative splicing, leading to at least five protein isoforms
(ERB1-5) [41].

The ovary, uterus, and breasts express ERs in abundance and, therefore, represent the main target
tissues of estrogens. However, estrogens affect many other tissues, including the immune system, in
which ER signaling contributes to the regulation of the immune response.
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Along with gene expression, a fundamental aspect of ER function in the cell is the recruitment of
coregulating proteins that are necessary for mediating the transcriptional activity of ERs. The resulting
complexes contribute to epigenetic modifications and chromatin remodeling that transform the response
to hormones or pharmacological ligands involved in regulatory activity [46]. Epigenetic modifications
are hereditary modifications that do not alter the DNA sequence but regulate gene expression. At the
DNA level, the most frequent epigenetic modification is the methylation of cytosine in CpG islands.
Usually, hypomethylated CpG islands are associated with active genes, while CpG hypermethylation
tends to silence gene expression. At the chromatin level, on the other hand, histone acetylation and
methylation model chromatin and form active regulatory regions as enhancers and promoters or
repressed heterochromatic regions (e.g., histone H3 lysine 27 acetylation in active regulatory regions
increases the accessibility of chromatin to TFs). DNA methylation and demethylation often contribute
to the inheritable organization of chromatin, while histone modifications are able to confer cellular
identity but remain sufficiently malleable to regulate response to stimuli. Once activated, ERs recruit
chromatin remodeling complexes in a timed and sequential manner. These mechanisms have been
described in detail in the model MCEF-7 breast cancer cell line [46,47]. The described ERx-associated
transcriptional coactivator complexes include histone arginine methyltransferases (e.g. p160, CARMI1),
histone acetyltransferases (e.g. CBP/p300, TIP60, GCN5), RNA-processing factors (e.g. SRA), and
polymerase Il mediator complexes (e.g. TRAP/DRIP/ARC). Conversely, corepressors include chromatin
remodeling complexes (e.g. SWI, NURD) and basal corepressors with histone deacetylase activity (e.g.
NCoR, SMRT). The Next-generation sequencing (NGS) technologies have broadened the understanding
of these processes by showing estrogen binding to ERs in distal regulatory regions to modulate the
expression of several hundreds of target genes [48,49]. In recent years, the recruitment of coregulators
has been shown to lead to the remodeling of chromatin’s three-dimensional (3D) organization [50].
This 3D rearrangement results in the formation of functional chromatin loops between ERx binding
sites at the enhancers and promoters of target genes that are activated [51-53]. The formation of
loops mediated by ER« is also involved in the mechanisms of gene repression. Estrogen-mediated
DNA looping represses diverse chromosomal regions through DNA methylation and repressive
chromatin modifications that inhibit gene expression [54]. Furthermore, ERo activity is influenced
by the tissue-specific presence of coactivators and transcriptional corepressors and their differential
interaction with ER« in the presence of estrogens or anti-estrogens [55,56].

3. Estrogen Effects on the Inmune System: Focus on MS

Increasing evidence is continuing to highlight the action of estrogens on the immune system.
These aspects have been described in both physiological (e.g., pregnancy) and pathological conditions
of the immune system (e.g., autoimmunity and the tumor microenvironment [57,58]).

Changes in circulating estrogen levels can affect progenitor and mature cells of both the innate
and adaptive immune systems. ERa is present in most cells from the early stages of hematopoietic
development to lymphocyte development in the thymus [57,59,60]. In the early stages, E2 enhances
the expansion of hematopoietic pluripotent stem cells (hPSCs) [60], the differentiation of monocytes to
macrophages [61], thymus trophism, and the maturation of double positive cells (CD4+ CD8+) [62,63]
through ERx-dependent pathways.

The first illustration of estrogenic effects on the immune system emerged from the analysis of ER
expression in peripheral blood mononuclear cells (PBMCs). ER expression has been explored by using
different techniques: quantitative TagMan RT-PCR analyses, flow cytometry, and Western blotting
have indicated that ERs are differentially expressed in PBMC subsets [64,65].
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Gene expression analysis by quantitative PCR (qPCR) has shown that ERx and ERp are
endogenously expressed in Th lymphocytes [64], and their expression levels in B lymphocytes
seem to be higher than those expressed in CD4+ T cells and CD8+ T cells; this is especially the case
for ERB. Comparisons between CD4+ T cells and CD8+ T cells suggest that CD4+ T lymphocytes
express higher levels of ERx. The immunostaining approach has been used to confirm and better
characterize the expression of a specific receptor in the same cell type. This approach has shown
that CD4+ and CD8+ T lymphocytes, B lymphocytes, and NK cells contain intracellular ERx and
ERp, and data suggest that ERf3 is expressed at a lower level with respect to ERx [65]. Interestingly,
the short isoform ERx46 is the most represented isoform in T cells compared with ERx66 [65]. The
ERx46 protein is also predominantly expressed by human macrophages in addition to the full-length
ERa66 [61] (Figure 2). ERx46 is formed by skipping exon 1, which encodes the AF-1 domain that is
responsible for ligand-independent transactivation. ERx46 and ERa66 share a ligand-binding site and
a DNA binding site, but they differ in the AF-1 domain. As a result of this difference, the mechanisms
of coregulator recruitment differ between cells with high levels of the short isoform and target tissues
in which the long isoform predominates and is constitutionally expressed at very high levels. Specific
tissue mechanisms depend on expression, the heterodimerization of receptor isoforms, competition
for DNA binding sites, or a combination of these processes [43]. Moreover, ERx66 and ERx46 have
similar estrogen binding affinity, but they bind differentially to some estrogen receptor agonists and
antagonists. In particular, a classical estrogen receptor antagonist, ICI 182,780 (Fulvestrant), was found
to have a higher affinity for ERx66 than ERx46 [66]. In the age of NGS, gene expression databases are
a popularly used tool to explore cell-type-specific gene expression levels. Figure 3 shows the gene
expression level of ER receptors in immune system cells. Interestingly, the expression of ERoc and ERf3
is greater in all B and T lymphocyte subtypes and NK cells in the non-activated state compared with
in vitro activated lymphocytes and circulating monocytes.
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Figure 2. The three main different isoforms of ERx are presented: the full-length 66 kDa ER«x (ERot66),
the AF-1 domain-truncated 46 kDa variant of ERx (ER«46), and a 36 kDa ER« variant (ERx36) that
lacks both AF-1 and AF-2 domains [43-45]. The relative protein levels in different immune system cells
are indicated by ++, +, or ND (not detected) [61,65].
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Figure 3. ERx and ERf3 expression in the immune system. The bar plots represent gene expression
data of the human genes ESR1 and ESR2, which encode for ERx and ERp, respectively. Data were
retrieved from the Database of Immune Cell expression, expression quantitative trait loci (eQTL), and
epigenomics (DICE) [67]. RNA-Seq data are normalized between samples and expressed in transcripts
per million (TPM). Data were generated from 13 immune cell types from 91 healthy subjects. The cell
types include: three innate immune cell types (CD14high CD16~ classical monocytes, CD14— CD16+
non-classical monocytes, and CD56dim CD16+ natural killer (NK) cells); four adaptive immune cell
types that have not encountered their cognate antigen in the periphery (naive B cells, naive CD4+ T
cells, naive CD8+ T cells, and naive Treg cells); six differentiated T cell subsets (Th1, Th1/17, Th17, Th2,
follicular helper T cells (TFH), and memory Treg cells); and two ex vivo activated cell types (naive
CD4+ and CD8+ T cells).

3.1. Innate Immune Cells

The role of ERs in the regulation of innate immune system cells has been described in recent
reviews [59,68-70], which have suggested estrogens’ potential contribution to sex differences in the
innate immune response by affecting both progenitor and mature cells.

The role of ERs in the regulation of the development and functions of innate immune cells has
been discussed in detail in other reviews and is beyond the purpose of our manuscript [20,57,58].
However, we report the main findings (summarized in Table 1), especially those linked with MS.
Estrogens affect the innate immune system by regulating the number of cells and their specific biological
functions: in neutrophils, they regulate chemotaxis, infiltration, and the induction of cytokine-induced
neutrophil chemoattractants (e.g., CINC-1, CINC-23, CINC-3) and cytokines (e.g., TNF-«, IL-6, IL-13);
in macrophages, they regulate chemotaxis, phagocytic activity, and the production of cytokines
(e.g., IL-6, TNF-«x); in NK cells, they decrease cytotoxicity; in dendritic cells (DCs), they promote
differentiation and regulate chemokine (e.g., IL-8 and chemokine C-C motif ligand 2 (CCL2)) and
cytokine (e.g., IL-6, IL-10) expression [20,57].

In the context of MS, ER«x activation delays the onset of experimental autoimmune
encephalomyelitis (EAE), while ER(} activation sustains later neuroprotection. Indeed, both ERx and
ERp signaling reduce demyelination, axonal loss, and neuronal pathology in EAE, but only ER
activation induces the recovery of motor performance [71]. The anti-inflammatory action of ERc is
connected to the modulation of microglia, which survey the CNS for infections and have functions
that are similar to macrophages in the periphery [72]. ERx regulates the inflammatory pathway in
microglia, likely by reducing the time of nuclear factor kappa-light-chain-enhancer of activated B
cells (NF-«B) transcriptional activity and thus regulating inflammatory signaling [73,74]. The later
neuroprotection mediated by ERf activation is connected to the observed effects on macrophages in
the CNS. ER activation induces CD11c+ DCs and macrophages to express less inducible NOS (iNOS)
and T-box transcription factor TBX21 (T-bet) and more IL-10, and these effects favor immunotolerance
in EAE mice. Furthermore, ER( activation induces the maturation of oligodendrocytes and enhances
remyelination [75]. The innate and adaptive immune systems are closely connected, and it has become
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evident that estrogens can regulate the interactions among immune cell types. Indeed, ERs sustain
neuroprotection in EAE by regulating the interactions between innate immune cells and both T [76]
and B cells [77].

3.2. T Cells

Estrogens can act on the adaptive immune system by modulating the production of cytokines and
interleukins and influencing the differentiation of lymphocytes and the inflammatory environment
(summarized in Table 1).

E2 modulates cytokine secretion by CD4+ T cells from healthy subjects and self-reactive CD4+ T
cell clones isolated from MS patients. Low concentrations of E2 (i.e., levels during the pre-ovulatory
phase of the menstrual cycle) induce IFN-y production in T cells in mice [78,79], humans [80], and
MS Th clones [81]. IFN-vy is the principal cytokine secreted by activated T cells as well as other
cell types, such as NK, B, and antigen-presenting cells (APCs), in order to promote cell-mediated
immunity. IFN-y stimulation by estrogens is mediated by ER« regulation of the IFN-y gene [78], the
Th1-specific transcription factor T-bet [82], or both. On the other hand, high doses of E2 (i.e., levels
during pregnancy) in these immune cells induce the expression of the transforming growth factor beta
(TGF-B) and anti-inflammatory interleukin 10 (IL-10) [81,83]. Although E2 is able to stimulate both
IEN-y and IL-10 at the same time, the results of these two events do not seem to conflict. An increase
in the concentration of estradiol favors immunotolerance by significantly decreasing the IFN-y/IL-10
ratio [84]. Moreover, in human CD4+ T cells, the production and secretion of TNF-o were seen to
increase at low E2 concentrations and be inhibited at high E2 concentrations [81].

Estrogens have a less marked effect on IL-4 production in CD4+ T cells [81,83,85]. IL-4 antagonizes
the effects of IFN-y and thus inhibits T cell-mediated immunity. During the menstrual cycle, a positive
correlation exists between estrogen levels and IL-4 [86]. The hormone progesterone induces IL-4
production in Th cells [87] but does not affect IL-12, IFN-y, IL-10, and TNF-« [84]. During pregnancy,
the modulation of IL-4 is attributed to progesterone, and the immune-tolerance environment can
be realized and maintained by the combined action of progesterone and estrogen, which affect the
synthesis of various anti-inflammatory cytokines [88]. The effects of estrogen on cytokine regulation in
adaptive immune cells are summarized in Figure 4.

E2 level (pg/ml)

10 1013 1074 1075

o [FN-y

2 TNF-a

® IL-10
Figure 4. E2 regulates cytokine production in CD4+ T cells. As estrogen levels increase, IFN-y and
TNEF-a production decreases, while IL-10 secretion increases.

Estrogens at pregnancy levels enhance the expression of the transcription factor forkhead box P3
(FOXP3), which is specific for Treg, in mice [89]. We recently demonstrated that FOXP3 expression
is promoted in human PBMCs upon stimulation with pregnancy levels of estradiol from Th17 cells
undergoing polarization in vitro [90]. Moreover, estradiol potentiates the suppressive function of Treg
cells by promoting their proliferation [91]. Estrogens also regulate immune checkpoints. Immune
checkpoints involve proteins that modulate the signaling pathways responsible for immunological
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tolerance. Programmed cell death protein 1 (PD-1) and cytotoxic T lymphocyte-associated protein
4 (CTLA-4) are immune checkpoint proteins, and their expression is regulated by ERx-mediated
signaling [92,93]. The anti-inflammatory effect of estrogens also involves Th17 cells. Th17 cells, which
are characterized by the production of the proinflammatory cytokine IL-17, have been associated
with the pathogenesis and outcome of several autoimmune diseases, including MS [2,94]. Moreover,
estrogen deficiency in postmenopausal women is associated with increased IL-17A levels [95].

The importance of estrogens in the modulation of the adaptive immune system during MS is
supported by data from the EAE murine model of MS. In mice with EAE, pregnancy limits cell
infiltration and reduces CNS demyelination. Induced immunization during pregnancy leads to a
reduction in the incidence of EAE and a decrease in clinical severity, while immunization during the
postpartum period increases the severity of the disease [96]. In addition, the effects of pregnancy are
evident even when the pregnancy occurs after the onset of EAE [97]. The protective effect is mediated
by a reduction in TNF-a- [98] and IL-17-secreting cells and an increase in IL-10-secreting cells. E2
promotes immune tolerance by enhancing the Treg cell compartment and FOXP3 expression [89]. E2
treatment in mice strengthens the expression of PD-1 in Treg cells in a dose-dependent manner and
correlates with the efficiency of EAE protection. E2 at pregnancy levels, but not at lower concentrations,
increases the frequency of Treg cells and drastically reduces the production of IL-17 in the peripheral
blood of immunized EAE mice. Treatment with E2 does not protect against EAE in mice with PD-1
deficiency [99]. Moreover, Esrl -/- immunized mice are not protected against EAE in the presence
of E2. The splenocytes of Esr1 -/- mice produce more TNF-«, IFN-y, and IL-6, even in the presence
of E2. In contrast, in wild-type (WT) mice and Esr2 -/- mice, E2 treatment produces clinical signs of
EAE suppression and eliminates inflammatory lesions in the CNS [100]. These results show that the
reduction in EAE severity involves the genomic action of E2 via ERx [71] and that the anti-inflammatory
effect is mediated by ERa but not ERf [71,100]. Moreover, experiments using ERa-deficient mice
have demonstrated that T lymphocytes (but not macrophages or dendritic cells) require ER« for the
E2-mediated inhibition of Th1/Th17 cell differentiation and protection from EAE [101]. The results of
these studies emphasize the role of Th17 and Treg cells in ERx-mediated E2 modulation in EAE.

3.3. B Cells

Estrogens also have profound effects on B cell maturation [102], differentiation, activity [103,104],
and survival [105]. Estrogen has been shown to increase the numbers of plasma cells and
autoantibody-producing cells [103]. Estrogens promote IL-10 secretion in regulatory B cells (Breg), a
specific subset of B cells that can negatively regulate T cell immune responses, thereby controlling the
follicular T cell response in germinal centers [106]. Together with Treg cells, the frequency of Breg cells
increases during pregnancy [107].

B cells contribute to the pathogenesis of MS by producing anti-myelin antibodies, acting as
antigen-presenting cells, and producing cytokines [108,109]. Interestingly, recent evidence has
demonstrated that B cells are required for E2-mediated protection against EAE. The effects of E2
on Breg cells are mediated through ERx and the PD-1 pathway. Treatment with E2 upregulates
PD-L1 in B cells and increases the percentage of Breg cells that produce IL-10. These results suggest
that the anti-inflammatory effects of estrogens are also mediated by Breg cells, which suppress
neuroinflammation during EAE and reduce the number of proinflammatory cells that infiltrate the
CNS [110-112].
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Table 1. Effect of estrogens on different immune cell types.

9 of 21

Cell Type Effect in Immune System References Effect in EAE/MS References
| TNF-«, IL-6, IL-13 [113]
. | Chemotaxis (iNOS,
Neutrophils CINC-1, CINC-2B, [114]
CINC-3)
1 TNF-o, IL-6, IL-1B [115]
Macrophages 1 INOS and T-bet [75] L iNOS and T-bet [75]
11L-10 [75] 11L-10 [75]
1 Differentiation (IL-8, and 1T Differentiation
CCL2) [116,117] (IL-8, and CCL2) [11e]
L iNOS, T-bet, TNF-a, %@OO‘SIEIE?
Denditic Cells IFN-y, lgg_l&PD-Ll, [75,116-118] 112 PD-L1. [75,116,118]
PD-L2
TIL-10 [75,117] TIL-10 [75]
T IL-6, IFN-y [119]
T M2 polarization [77,120] T M2 polarization [77]
. . Activation [76] | Activation [76]
Microgl l
icroghia | NF-kB, IL-1B [73]
T1IL-10 [73]
| Cytotoxic activity [121]
o T Activation of
NK T Activation of
CD3+CD56+CD8+ cells [122] CD3+CD56+CD8+ [122]
cells
1 Treg/Th2 [120,123] 1 Treg/Th2 [123,124]
1 Th17/Th1, T cell
1 Th17/Thl [123,125] infiltration in CNS [123,125]
| TFH cell response [126] | TFH cell response [126]
1 T CD8+ cells [120]
11 IFN-y [78-83] L TEN-y [79-81,83,127]
11 TNF-« [81,98,123] 1 TNF-« [81,98,123]
T cells 7 IL-10, IL-4,
T1L-10, IL-4, TGF-p [83,84] TGF-B [83]
L TL-17 and TL-23 [123] L TL-17 and TL-23 [123,127]
| NF-kB, iNOS [76] | NF-kB, iNOS [76]
T PD-1, CTLA4, FOXP3, T PD-1, CTLA4, o
GATA3 [83,90,92,93] FOXP3, GATA3 [83,90,92,93]
| RORC, T-bet [90,123] | RORC, T-bet [90,123]
B cell 1T IL-10 [77] T IL-10 [77]
celis 1 PD-L1 [110,111,125] 7 PD-L1 [110,111,125]

4. Estrogens Modulate the T Helper Epigenome in MS

The specific genomic regulatory landscape of cells controls gene expression and defines cell

identity. The phenotypes of Th cells are determined by their cytokine secretion, gene expression, and
surface molecules, which guide their action in the adaptive immune system. Th cells can react to
changes in environmental stimuli by repolarizing to different cell subtypes in a phenomenon defined as
plasticity [128]. Epigenetic reprogramming is a series of events that underlie plasticity, and this process
determines the difference between a pro-inflammatory and an anti-inflammatory environment [129].
In this context, chromatin functions as a device that controls the immune response. As previously
discussed, methylation of DNA contributes more to the stable organization of chromatin, while histone
modifications can regulate transitory responses to stimuli. Histone modifications are able to maintain a
stable cellular state while remaining sufficiently malleable to allow for plasticity in Th cells. In fact, the
histone modifications that determine the accessibility of chromatin to TFs can change in response to
different situations and stimuli [130]. One of the pioneering studies on this subject described changes
in histone modification at the promoter of lineage-determining TFs in T cells as a molecular mechanism
that occurs during cell plasticity [131]. Considerable data depict a more complex molecular mechanism
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in which distal genomic regulatory regions, such as enhancers, become active after the binding of TF
complexes [50]. Epigenome dynamics in T cells have been described and discussed, starting from their
development in the thymus to their peripheral plasticity [132].

The balance between Th17 and Treg is widely considered to reflect inflammation in MS and is
strongly connected to disease outcomes [133]. Th17 and Treg have a high degree of plasticity, which
allows for their functional adaptation to the phases of the immune response. However, Th17-Treg
plasticity could also be a critical factor in MS [134]. The integration of genome-wide data on the
regulation of the epigenome and transcriptome by TFs has helped to unravel the intricate gene
regulatory circuits underlying these processes in Treg [90,135] and Th17 cells [90,136,137]. Some
epigenetic regulation mechanisms and targets have been associated with EAE and the Th17-Treg
axis. In encephalitogenic T cells of EAE mice, signaling through CD44 causes increased methylation
of Ifng/ll17a and demethylation of II4/Foxp3 [138]. Since CD44 expression is chronically elevated in
MS demyelinating lesions, this mechanism has been proposed to sustain inflammation at the sites of
CNS lesions [138]. Conversely, the CD27 and CD70 costimulatory pathway results in the epigenetic
silencing of the IL17a gene, thus inhibiting Th17 differentiation [139].

In particular, FOXP3, given its role as a key transcription factor in Treg cells, has long been
studied in the context of epigenetic regulation and autoimmunity. The demethylation of the conserved
non-coding sequence (CNS0) in the FOXP3 locus helps to stabilize the identity of Treg cells [140]. In
addition to CNSO0, at least two other known CNSs are responsible for FOXP3 regulation (i.e., CNS1 and
CNS2) [141]. Recent studies on CNS1—a FOXP3 intronic enhancer that is essential for the development
of peripheral Treg cells—have reported that the adaptation of the immune system during pregnancy
enabled maternal—fetal tolerance [140]. Moreover, the deletion of CNS2—a FOXP3 enhancer—led to
reduced stability and the loss of FOXP3 expression in proliferating Treg cells [140,142,143]. However,
FOXP3 alone does not control all aspects of Treg biology and is not the initiating factor in Treg
development. DNA demethylation of Treg signature genes is required for the stable maintenance of
the Treg phenotype and function [144,145]. The establishment of the Treg-specific epigenome starts
before FOXP3 expression. Indeed, FOXP3 exploits a pre-existing enhancer landscape and a TF network
of Treg cells [146—148]. Ten-eleven translocation (TET) proteins regulate DNA methylation and gene
expression by converting 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC). Treg cells in
mice with specific Tet2/Tet3 deficiency begin to express IL-17. This phenotypic shift occurs not only at
the level of known CNSs but also in new regions identified as FOXP3’s upstream enhancer, which
could contribute to stable FOXP3 expression [149]. DNA methyltransferase 3A (DNMT3A), responsible
for “de novo” methylation, prevents methylation of the FOXP3 locus [150], thus supporting Treg
cell identity at sites of inflammation by keeping CNS2 in a demethylated state and allowing for the
maintenance of its suppressive function. Interestingly, the epigenetic reprogramming of peripheral
Treg cells is possible to achieve in vitro through the demethylation of the RAR-related orphan receptor
C (RORC) locus and the development of Th17-like cells [151].

The role of estrogens and ER in the complexity of epigenetic regulation mechanisms in T cells has
been poorly studied, but some evidence has emerged from recent studies. As previously described,
estrogens promote the activation of ERx and its transcriptional activity through interactions with ERE.
ER« binding at the RORC and FOXP3 regulatory regions has been recently demonstrated. In both
in vitro experiments and pregnant MS patients, E2 at pregnancy levels inhibited Th17 polarization,
thereby reducing RORC expression and enhancing FOXP3 transcription as a result of ERx binding
to their promoters and enhancers (Figure 5) [90]. The molecular mechanisms of this process remain
elusive. However, the suppressive action of ERoc in Th17 cells could be mediated by the recruitment of
the repressor of estrogen receptor activity (REA). The ERa/REA complex recruits histone deacetylases
to the RORC promoter to suppress its expression [152]. In the orchestration of chromatin architecture,
ERa may mediate epigenetic modifications at chromatin hubs in CD4+ T cells to influence their
differentiation and plasticity (Figure 5). In this respect, ERa may act as a cooperative TF in T cell
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epigenome dynamics. Understanding the steps that lead to this mechanism may open doors to new
therapeutic approaches that exploit this property of T cells.

E2 level

- ——eee

CD4+ T cell CD4+ T cell

. Estrogen receptor alpha
Th17- lineage specific TFs
® Treg-lineage specific TFs

eee Active chromatin state

Figure 5. A model of ERx-dependent modulation of nuclear organization of chromatin in T helper
cells. Estrogens participate in the mechanisms of transcriptional regulation through the binding of ER«
at regulatory regions, thereby influencing the phenotype of T helper cells. Estrogens at normal levels
promote the binding and activation of Th17 lineage-specific TFs (e.g., RORC), whereas estrogens at
pregnancy levels bind preferentially to Treg lineage-specific TFs, thus inhibiting RORC and promoting
FOXP3 transcriptional activation [90]. ERa may participate with TFs that are specific for Th17 and Treg
lineages in chromatin remodeling in these cells, although the mechanisms are still unclear.

5. Estrogens as a Potential MS Therapy

To mimic the protective effects of estrogens observed during pregnancy, E3 was administered
in 10 female MS patients for 6 months. Then, the treatment was discontinued for the next 6 months,
followed by 4 months of retreatment. The results showed that the number and volume of MRI lesions
decreased in all patients; this clinical observation was correlated with reduced IFN-vy levels [153].
MRI-enhancing MS lesions increased 3 months after treatment was stopped. In parallel, in vitro
analysis showed reduced production of TNF-« and the upregulation of anti-inflammatory IL-5 in
CD4+ T lymphocytes and IL-10 in macrophages [153]. Estriol was well tolerated, no serious side
effects were observed; there were neither significant alterations in any laboratory measures including
sexual hormone levels [153]. These promising preliminary results led to a larger phase 2 trial [154] that
enrolled 164 female MS patients, who were treated with glatiramer acetate (GA), an immunomodulating
drug used as a first line therapy for MS, and E3 as an add-on therapy compared with GA alone. The
results showed a reduced annualized relapse rate in the group treated with E3 (0.25 relapses per year
group versus 0.37 relapses per year in the control group). Moreover, serum E3 concentrations were
inversely correlated with the number of relapses and the number of active lesions on brain MRI [154].
No differences were observed in the number of cerebral lesions (enhancing or T2 lesions) [154]. Safety
analysis showed that the serious adverse events proportion did not differ between the treatment and
the placebo group. Post-hoc MRI investigations using volumetry study, showed at 12 months less
cortical grey matter atrophy in the estriol group than in the control group [154].

In 2009, a double-blind placebo-controlled phase 3 study enrolled 300 pregnant MS women [155].
The main objective of the study was to prevent postpartum MS relapses by treatment with nomegestrol
acetate (oral administration) 1 day after delivery and an E2 patch 2 weeks later (i.e., 15 days after
delivery). The results did not show any beneficial effect on relapse rates or on the MRI [155]. A more
recent phase 2 clinical trial was conducted in female MS patients who received high-dose ethinylestradiol
and desogestrel in addition to IFN-§3, an immunosuppressant drug widely used as first-line treatment
in relapsing forms of MS. The results showed a significant decrease in new gadolinium-enhancing
lesions compared with patients who received only IFN-{3 over a 96-week period [156]. In this study no
serious adverse events were detected [156].
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As occurs in the postpartum period, the estrogen drop during menopause could favor MS
relapses [157]. A retrospective questionnaire-based study on menopausal and premenopausal women
with MS [158] showed that 82% of menopausal women reported that the severity of their symptoms
worsened during the premenstrual period. Among postmenopausal women, 54% reported worsening
symptoms after menopause, and 75% of postmenopausal women who tried hormone replacement
therapy reported disease improvement [158].

6. Conclusions

Estrogens regulate immune cell responses and exert anti-inflammatory and neuroprotective
effects in MS. Because the differences in the immune cell pattern are maximized during pregnancy, the
pregnant condition represents a model for investigating the immunological changes that determine
protection from disease activity.

In this review, we describe the phenotypical changes in adaptive immune cells induced by
estrogens, spanning from ER expression in different immune cell types, through estrogen-induced
cytokine modulation, to estrogen-induced epigenetic changes in T cells. A complex picture can be
depicted in which ERs may interact with genomic regulatory regions to recruit coregulators and
chromatin remodelers. The NGS approach could pave the way to a deeper knowledge of the gene
expression and regulation involved in these cell dynamics, as shown in recent studies that have
explored MS brain lesions at single-cell resolution [159-161].

Although challenging, identifying the molecular mechanisms that underlie pregnancy-induced
protection from relapses in MS could lead to potential therapeutic targets to apply as alternative
or complementary treatments to those already used. Estrogen, as a therapeutic tool, needs further
investigation in addition to the ongoing phase 3 study. These studies are essential for the development
of new therapeutic opportunities to prevent postpartum relapses or for the treatment of women with
persistently high disease activity who are generally advised to delay pregnancy [162]. Furthermore,
the use of a molecular target could optimize the effectiveness of estrogen to avoid its side effects.

Author Contributions: A.M.; S.R. and S.F.D.M. wrote the paper; S.C. and M.C. reviewed the paper.
Funding: This study was supported by University of Torino annual ordinary fundings (RILO 2016-2017).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Dendrou, C.A.; Fugger, L.; Friese, M.A. Immunopathology of multiple sclerosis. Nat Rev Immunol 2015, 15,
545-558. [CrossRef] [PubMed]

2. Durelli, L.; Conti, L.; Clerico, M.; Boselli, D.; Contessa, G.; Ripellino, P.; Ferrero, B.; Eid, P.; Novelli, F. T-helper
17 cells expand in multiple sclerosis and are inhibited by interferon-p. Ann Neurol. 2009, 65, 499-509.
[CrossRef] [PubMed]

3.  Langrish, C.L.; Chen, Y.; Blumenschein, W.M.; Mattson, J.; Basham, B.; Sedgwick, J.D.; McClanahan, T.;
Kastelein, R.A.; Cua, D.J. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation.
J. Exp. Med. 2005, 201, 233-240. [CrossRef] [PubMed]

4. Kebir, H.; Kreymborg, K.; Ifergan, I.; Dodelet-Devillers, A.; Cayrol, R.; Bernard, M.; Giuliani, F.; Arbour, N.;
Becher, B.; Prat, A. Human TH17 lymphocytes promote blood-brain barrier disruption and central nervous
system inflammation. Nat. Med. 2007, 13, 1173-1175. [CrossRef]

5. Tzartos, ].S.; Friese, M.A.; Craner, M.].; Palace, ].; Newcombe, ].; Esiri, M.M.; Fugger, L. Interleukin-17
production in central nervous system-infiltrating T cells and glial cells is associated with active disease in
multiple sclerosis. Am. J. Pathol. 2008, 172, 146-155. [CrossRef]

6. Rolla, S.; Bardina, V.; De Mercanti, S.; Quaglino, P.; De Palma, R.; Gned, D.; Brusa, D.; Durelli, L.; Novelli, E;
Clerico, M. Th22 cells are expanded in multiple sclerosis and are resistant to IFN-f. J. Leukoc. Biol. 2014, 96,
1155-1164. [CrossRef]

7. Compston, A.; Coles, A. Multiple sclerosis. Lancet 2008, 372, 1502-1517. [CrossRef]


http://dx.doi.org/10.1038/nri3871
http://www.ncbi.nlm.nih.gov/pubmed/26250739
http://dx.doi.org/10.1002/ana.21652
http://www.ncbi.nlm.nih.gov/pubmed/19475668
http://dx.doi.org/10.1084/jem.20041257
http://www.ncbi.nlm.nih.gov/pubmed/15657292
http://dx.doi.org/10.1038/nm1651
http://dx.doi.org/10.2353/ajpath.2008.070690
http://dx.doi.org/10.1189/jlb.5A0813-463RR
http://dx.doi.org/10.1016/S0140-6736(08)61620-7

Cells 2019, 8, 1280 13 of 21

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Lublin, ED.; Reingold, 5.C.; Cohen, ].A ; Cutter, G.R.; Serensen, P.S.; Thompson, A.].; Wolinsky, J.S.; Balcer, L.].;
Banwell, B.; Barkhof, F; et al. Defining the clinical course of multiple sclerosis: The 2013 revisions. Neurology
2014, 83, 278-286. [CrossRef]

Westerlind, H.; Ramanujam, R.; Uvehag, D.; Kuja-Halkola, R.; Boman, M.; Bottai, M.; Lichtenstein, P.; Hillert, J.
Modest familial risks for multiple sclerosis: A registry-based study of the population of Sweden. Brain 2014,
137,770-778. [CrossRef]

Sadovnick, A.D.; Armstrong, H.; Rice, G.P.; Bulman, D.; Hashimoto, L.; Paty, D.W.; Hashimoto, S.A;
Warren, S.; Hader, W.; Murray, T.J. A population-based study of multiple sclerosis in twins: Update.
Ann. Neurol. 1993, 33, 281-285. [CrossRef]

Hollenbach, J.A.; Oksenberg, ].R. The immunogenetics of multiple sclerosis: A comprehensive review.
J. Autoimmun. 2015, 64, 13-25. [CrossRef] [PubMed]

International Multiple Sclerosis Genetics Consortium; Wellcome Trust Case Control Consortium 2; Sawcer, S.;
Hellenthal, G.; Pirinen, M.; Spencer, C.C.A.; Patsopoulos, N.A.; Moutsianas, L.; Dilthey, A.; Su, Z,; et al.
Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis. Nature 2011,
476,214-219. [PubMed]

Belbasis, L.; Bellou, V.; Evangelou, E.; Ioannidis, J.P.A.; Tzoulaki, I. Environmental risk factors and multiple
sclerosis: An umbrella review of systematic reviews and meta-analyses. Lancet Neurol. 2015, 14, 263-273.
[CrossRef]

Handel, A.E.; Williamson, A.].; Disanto, G.; Handunnetthi, L.; Giovannoni, G.; Ramagopalan, S.V. An
updated meta-analysis of risk of multiple sclerosis following infectious mononucleosis. PLoS ONE 2010, 5.
[CrossRef] [PubMed]

Zhang, P; Wang, R.; Li, Z.; Wang, Y.; Gao, C.; Lv, X,; Song, Y.; Li, B. The risk of smoking on multiple sclerosis:
A meta-analysis based on 20,626 cases from case-control and cohort studies. Peer]. 2016, 4. [CrossRef]
McDowell, T.-Y.; Amr, S.; Culpepper, W.J.; Langenberg, P; Royal, W.; Bever, C.; Bradham, D.D. Sun
exposure, vitamin D intake and progression to disability among veterans with progressive multiple sclerosis.
Neuroepidemiology 2011, 37, 52-57. [CrossRef]

Glenn, ].D.; Mowry, E.M. Emerging Concepts on the Gut Microbiome and Multiple Sclerosis. ]. Interferon
Cytokine Res. 2016, 36, 347-357. [CrossRef]

Kotzamani, D.; Panou, T.; Mastorodemos, V.; Tzagournissakis, M.; Nikolakaki, H.; Spanaki, C.; Plaitakis, A.
Rising incidence of multiple sclerosis in females associated with urbanization. Neurology 2012, 78, 1728-1735.
[CrossRef]

Wend, K.; Wend, P.; Krum, S.A. Tissue-Specific Effects of Loss of Estrogen during Menopause and Aging.
Front. Endocrinol (Lausanne) 2012, 3. [CrossRef]

Fish, E.N. The X-files in immunity: Sex-based differences predispose immune responses. Nat. Rev. Immunol.
2008, 8, 737-744. [CrossRef]

Voci, C. Testicular hypofunction and multiple sclerosis: Cause or consequence? Ann Neurol. 2014, 76, 765.
[CrossRef] [PubMed]

Schumacher, M.; Hussain, R.; Gago, N.; Oudinet, ].P.; Mattern, C.; Ghoumari, A.M. Progesterone synthesis in
the nervous system: Implications for myelination and myelin repair. Front Neurosci. 2012, 6, 10. [CrossRef]
[PubMed]

Confavreux, C.; Hutchinson, M.; Hours, M.M.; Cortinovis-Tourniaire, P.; Moreau, T. Rate of pregnancy-related
relapse in multiple sclerosis. Pregnancy in Multiple Sclerosis Group. N. Engl. |. Med. 1998, 339, 285-291.
[CrossRef] [PubMed]

Vukusic, S.; Hutchinson, M.; Hours, M.; Moreau, T.; Cortinovis-Tourniaire, P.; Adeleine, P.; Confavreux, C.;
Pregnancy In Multiple Sclerosis Group. Pregnancy and multiple sclerosis (the PRIMS study): Clinical
predictors of post-partum relapse. Brain 2004, 127, 1353-1360. [CrossRef] [PubMed]

Finkelsztejn, A.; Brooks, ].B.B.; Paschoal, EM.; Fragoso, Y.D. What can we really tell women with multiple
sclerosis regarding pregnancy? A systematic review and meta-analysis of the literature. BJOG 2011, 118,
790-797. [CrossRef] [PubMed]

Hughes, S.E.; Spelman, T.; Gray, O.M.; Boz, C.; Trojano, M.; Lugaresi, A.; Izquierdo, G.; Duquette, P;
Girard, M.; Grand'Maison, F; et al. Predictors and dynamics of postpartum relapses in women with multiple
sclerosis. Mult. Scler. 2014, 20, 739-746. [CrossRef]


http://dx.doi.org/10.1212/WNL.0000000000000560
http://dx.doi.org/10.1093/brain/awt356
http://dx.doi.org/10.1002/ana.410330309
http://dx.doi.org/10.1016/j.jaut.2015.06.010
http://www.ncbi.nlm.nih.gov/pubmed/26142251
http://www.ncbi.nlm.nih.gov/pubmed/21833088
http://dx.doi.org/10.1016/S1474-4422(14)70267-4
http://dx.doi.org/10.1371/journal.pone.0012496
http://www.ncbi.nlm.nih.gov/pubmed/20824132
http://dx.doi.org/10.7717/peerj.1797
http://dx.doi.org/10.1159/000329258
http://dx.doi.org/10.1089/jir.2015.0177
http://dx.doi.org/10.1212/WNL.0b013e31825830a9
http://dx.doi.org/10.3389/fendo.2012.00019
http://dx.doi.org/10.1038/nri2394
http://dx.doi.org/10.1002/ana.24276
http://www.ncbi.nlm.nih.gov/pubmed/25223850
http://dx.doi.org/10.3389/fnins.2012.00010
http://www.ncbi.nlm.nih.gov/pubmed/22347156
http://dx.doi.org/10.1056/NEJM199807303390501
http://www.ncbi.nlm.nih.gov/pubmed/9682040
http://dx.doi.org/10.1093/brain/awh152
http://www.ncbi.nlm.nih.gov/pubmed/15130950
http://dx.doi.org/10.1111/j.1471-0528.2011.02931.x
http://www.ncbi.nlm.nih.gov/pubmed/21401856
http://dx.doi.org/10.1177/1352458513507816

Cells 2019, 8, 1280 14 of 21

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

Javadian, A.; Salehi, E.; Bidad, K.; Sahraian, M.A.; Izad, M. Effect of estrogen on Th1, Th2 and Th17 cytokines
production by proteolipid protein and PHA activated peripheral blood mononuclear cells isolated from
multiple sclerosis patients. Arch. Med. Res. 2014, 45, 177-182. [CrossRef]

Robinson, D.P,; Klein, S.L. Pregnancy and pregnancy-associated hormones alter immune responses and
disease pathogenesis. Horm Behav 2012, 62, 263-271. [CrossRef]

Patas, K.; Engler, ].B.; Friese, M.A.; Gold, S.M. Pregnancy and multiple sclerosis: Feto-maternal immune
cross talk and its implications for disease activity. J. Reprod. Immunol. 2013, 97, 140-146. [CrossRef]
Somerset, D.A.; Zheng, Y.; Kilby, M.D.; Sansom, D.M.; Drayson, M.T. Normal human pregnancy is associated
with an elevation in the immune suppressive CD25+ CD4+ regulatory T-cell subset. Immunology 2004, 112,
38-43. [CrossRef]

Santner-Nanan, B.; Peek, M.].; Khanam, R.; Richarts, L.; Zhu, E.; Fazekas de St Groth, B.; Nanan, R. Systemic
increase in the ratio between Foxp3+ and IL-17-producing CD4+ T cells in healthy pregnancy but not in
preeclampsia. J. Immunol. 2009, 183, 7023-7030. [CrossRef] [PubMed]

Sanchez-Ramon, S.; Navarro A, J.; Aristimufio, C.; Rodriguez-Mahou, M.; Bellon, ].M.; Fernandez-Cruz, E.;
de Andrés, C. Pregnancy-induced expansion of regulatory T-lymphocytes may mediate protection to multiple
sclerosis activity. Immunol. Lett. 2005, 96, 195-201. [CrossRef] [PubMed]

Aluvihare, V.R.; Kallikourdis, M.; Betz, A.G. Regulatory T cells mediate maternal tolerance to the fetus. Nat.
Immunol. 2004, 5, 266-271. [CrossRef] [PubMed]

Desai, M.K.; Brinton, R.D. Autoimmune Disease in Women: Endocrine Transition and Risk Across the
Lifespan. Front. Endocrinol. 2019, 10. [CrossRef]

Gubbels Bupp, M.R.; Potluri, T.; Fink, A.L.; Klein, S.L. The Confluence of Sex Hormones and Aging on
Immunity. Front. Immunol. 2018, 9, 1269. [CrossRef]

Watson, C.S.; Alyea, R.A.; Cunningham, K.A ; Jeng, Y.-J. Estrogens of multiple classes and their role in mental
health disease mechanisms. Int. J. Womens Health 2010, 2, 153-166. [CrossRef]

Bjornstrom, L.; Sjoberg, M. Mechanisms of estrogen receptor signaling: Convergence of genomic and
nongenomic actions on target genes. Mol. Endocrinol. 2005, 19, 833-842. [CrossRef]

Webb, P; Nguyen, P; Valentine, C.; Lopez, G.N.; Kwok, G.R.; McInerney, E.; Katzenellenbogen, B.S.;
Enmark, E.; Gustafsson, J.A.; Nilsson, S.; et al. The estrogen receptor enhances AP-1 activity by two distinct
mechanisms with different requirements for receptor transactivation functions. Mol. Endocrinol. 1999, 13,
1672-1685. [CrossRef]

Safe, S. Transcriptional activation of genes by 17 beta-estradiol through estrogen receptor-Sp1 interactions.
Vitam. Horm. 2001, 62, 231-252.

Caizzi, L.; Ferrero, G.; Cutrupi, S.; Cordero, F; Ballaré, C.; Miano, V.; Reineri, S.; Ricci, L.; Friard, O.; Testori, A.;
et al. Genome-wide activity of unliganded estrogen receptor-« in breast cancer cells. Proc. Natl. Acad Sci. U
S A 2014, 111, 4892-4897. [CrossRef]

Zhao, C.; Dahlman-Wright, K.; Gustafsson, ].-A. Estrogen receptor 3: An overview and update. Nucl. Recept.
Signal 2008, 6. [CrossRef] [PubMed]

Reid, G.; Denger, S.; Kos, M.; Gannon, F. Human estrogen receptor-alpha: Regulation by synthesis,
modification and degradation. Cell. Mol. Life Sci. 2002, 59, 821-831. [CrossRef] [PubMed]

Flouriot, G.; Brand, H.; Denger, S.; Metivier, R.; Kos, M.; Reid, G.; Sonntag-Buck, V.; Gannon, F. Identification
of a new isoform of the human estrogen receptor-alpha (hER-«) that is encoded by distinct transcripts and
that is able to repress hER-w activation function 1. EMBO J. 2000, 19, 4688-4700. [CrossRef] [PubMed]
Denger, S.; Reid, G.; Kos, M; Flouriot, G.; Parsch, D.; Brand, H.; Korach, K.S.; Sonntag-Buck, V.; Gannon, F.
ERalpha gene expression in human primary osteoblasts: Evidence for the expression of two receptor proteins.
Mol. Endocrinol. 2001, 15, 2064-2077.

Wang, Z.; Zhang, X.; Shen, P; Loggie, BW.; Chang, Y.; Deuel, T.F. Identification, cloning, and expression of
human estrogen receptor-alpha36, a novel variant of human estrogen receptor-alpha66. Biochem. Biophys.
Res. Commun. 2005, 336, 1023-1027. [CrossRef]

Perissi, V.; Rosenfeld, M.G. Controlling nuclear receptors: The circular logic of cofactor cycles. Nat. Rev. Mol.
Cell Biol. 2005, 6, 542-554. [CrossRef]

Métivier, R.; Penot, G.; Hiibner, M.R; Reid, G.; Brand, H.; Kos, M.; Gannon, F. Estrogen receptor-alpha directs
ordered, cyclical, and combinatorial recruitment of cofactors on a natural target promoter. Cell 2003, 115,
751-763. [CrossRef]


http://dx.doi.org/10.1016/j.arcmed.2014.01.002
http://dx.doi.org/10.1016/j.yhbeh.2012.02.023
http://dx.doi.org/10.1016/j.jri.2012.10.005
http://dx.doi.org/10.1111/j.1365-2567.2004.01869.x
http://dx.doi.org/10.4049/jimmunol.0901154
http://www.ncbi.nlm.nih.gov/pubmed/19915051
http://dx.doi.org/10.1016/j.imlet.2004.09.004
http://www.ncbi.nlm.nih.gov/pubmed/15585323
http://dx.doi.org/10.1038/ni1037
http://www.ncbi.nlm.nih.gov/pubmed/14758358
http://dx.doi.org/10.3389/fendo.2019.00265
http://dx.doi.org/10.3389/fimmu.2018.01269
http://dx.doi.org/10.2147/IJWH.S6907
http://dx.doi.org/10.1210/me.2004-0486
http://dx.doi.org/10.1210/mend.13.10.0357
http://dx.doi.org/10.1073/pnas.1315445111
http://dx.doi.org/10.1621/nrs.06003
http://www.ncbi.nlm.nih.gov/pubmed/18301783
http://dx.doi.org/10.1007/s00018-002-8470-2
http://www.ncbi.nlm.nih.gov/pubmed/12088282
http://dx.doi.org/10.1093/emboj/19.17.4688
http://www.ncbi.nlm.nih.gov/pubmed/10970861
http://dx.doi.org/10.1016/j.bbrc.2005.08.226
http://dx.doi.org/10.1038/nrm1680
http://dx.doi.org/10.1016/S0092-8674(03)00934-6

Cells 2019, 8, 1280 15 of 21

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

Cicatiello, L.; Scafoglio, C.; Altucci, L.; Cancemi, M.; Natoli, G.; Facchiano, A.; Iazzetti, G.; Calogero, R.;
Biglia, N.; De Bortoli, M.; et al. A genomic view of estrogen actions in human breast cancer cells by expression
profiling of the hormone-responsive transcriptome. J. Mol. Endocrinol. 2004, 32, 719-775. [CrossRef]

Hah, N.; Danko, C.G.; Core, L.; Waterfall, ].].; Siepel, A.; Lis, ].T.; Kraus, W.L. A rapid, extensive, and transient
transcriptional response to estrogen signaling in breast cancer cells. Cell 2011, 145, 622-634. [CrossRef]

Le Dily, E,; Beato, M. Signaling by Steroid Hormones in the 3D Nuclear Space. Int ] Mol Sci 2018, 19. [CrossRef]
Fullwood, M.J.; Liu, M.H.; Pan, Y.E; Liu, J.; Xu, H.; Mohamed, Y.B.; Orlov, Y.L.; Velkov, S.; Ho, A.; Mei, PH.;
etal. An oestrogen-receptor-alpha-bound human chromatin interactome. Nature 2009, 462, 58-64. [CrossRef]
[PubMed]

Quintin, J.; Le Péron, C.; Palierne, G.; Bizot, M.; Cunha, S.; Sérandour, A.A.; Avner, S.; Henry, C.; Percevault, E;
Belaud-Rotureau, M.-A; et al. Dynamic estrogen receptor interactomes control estrogen-responsive trefoil
Factor (TFF) locus cell-specific activities. Mol. Cell. Biol. 2014, 34, 2418-2436. [CrossRef] [PubMed]
Bretschneider, N.; Kangaspeska, S.; Seifert, M.; Reid, G.; Gannon, F.; Denger, S. E2-mediated cathepsin D
(CTSD) activation involves looping of distal enhancer elements. Mol Oncol 2008, 2, 182-190. [CrossRef]
Hsu, P-Y.; Hsu, H.-K,; Singer, G.A.C,; Yan, P.S.; Rodriguez, B.A.T.; Liu, J.C.; Weng, Y.-I.; Deatherage, D.E.;
Chen, Z.; Pereira, ].S.; et al. Estrogen-mediated epigenetic repression of large chromosomal regions through
DNA looping. Genome Res. 2010, 20, 733-744. [CrossRef]

Lavinsky, R.M.; Jepsen, K.; Heinzel, T.; Torchia, ].; Mullen, T.M.; Schiff, R.; Del-Rio, A.L.; Ricote, M.; Ngo, S.;
Gemsch, |; et al. Diverse signaling pathways modulate nuclear receptor recruitment of N-CoR and SMRT
complexes. Proc. Natl. Acad. Sci. U.S.A. 1998, 95, 2920-2925. [CrossRef]

Rosenfeld, M.G.; Lunyak, V.V,; Glass, C.K. Sensors and signals: A coactivator/corepressor/epigenetic code
for integrating signal-dependent programs of transcriptional response. Genes Dev. 2006, 20, 1405-1428.
[CrossRef] [PubMed]

Khan, D.; Ansar Ahmed, S. The Immune System Is a Natural Target for Estrogen Action: Opposing Effects of
Estrogen in Two Prototypical Autoimmune Diseases. Front. Immunol. 2016, 6. [CrossRef]

Navarro, EC.; Herrnreiter, C.; Nowak, L.; Watkins, S.K. Estrogen Regulation of T-Cell Function and Its
Impact on the Tumor Microenvironment. Gend. Genome 2018, 2, 81-91. [CrossRef]

Kovats, S. Estrogen receptors regulate innate immune cells and signaling pathways. Cell. Immunol. 2015, 294,
63-69. [CrossRef]

Kim, H.-R.; Lee, J.-H.; Heo, H.-R.; Yang, S.-R.; Ha, K.-S.; Park, W.S.; Han, E.-T.; Song, H.; Hong, S.-H.
Improved hematopoietic differentiation of human pluripotent stem cells via estrogen receptor signaling
pathway. Cell Biosci 2016, 6. [CrossRef]

Murphy, A.J.; Guyre, PM.; Wira, C.R.; Pioli, P.A. Estradiol regulates expression of estrogen receptor ERalpha46
in human macrophages. PLoS ONE 2009, 4, e5539. [CrossRef] [PubMed]

Staples, J.E.; Gasiewicz, T.A.; Fiore, N.C.; Lubahn, D.B.; Korach, K.S.; Silverstone, A.E. Estrogen receptor
alpha is necessary in thymic development and estradiol-induced thymic alterations. J. Immunol. 1999, 163,
4168-4174. [PubMed]

Erlandsson, M.C.; Ohlsson, C.; Gustafsson, J.A.; Carlsten, H. Role of oestrogen receptors alpha and beta in
immune organ development and in oestrogen-mediated effects on thymus. Immunology 2001, 103, 17-25.
[CrossRef] [PubMed]

Phiel, K.L.; Henderson, R.A.; Adelman, S.J.; Elloso, M.M. Differential estrogen receptor gene expression
in human peripheral blood mononuclear cell populations. Immunol. Lett. 2005, 97, 107-113. [CrossRef]
[PubMed]

Pierdominici, M.; Maselli, A.; Colasanti, T.; Giammarioli, A.M.; Delunardo, F.; Vacirca, D.; Sanchez, M.;
Giovannetti, A.; Malorni, W.; Ortona, E. Estrogen receptor profiles in human peripheral blood lymphocytes.
Immunol. Lett. 2010, 132, 79-85. [CrossRef] [PubMed]

Lin, AH.Y; Li, RW.S.; Ho, EYW.,; Leung, G.P.H.; Leung, S.W.S.; Vanhoutte, PM.; Man, R.Y.K. Differential
Ligand Binding Affinities of Human Estrogen Receptor-u« Isoforms. PLOS ONE 2013, 8, e63199. [CrossRef]
[PubMed]

Schmiedel, B.J.; Singh, D.; Madrigal, A.; Valdovino-Gonzalez, A.G.; White, B.M.; Zapardiel-Gonzalo, J.;
Ha, B; Altay, G.; Greenbaum, J.A.; McVicker, G.; et al. Impact of Genetic Polymorphisms on Human Immune
Cell Gene Expression. Cell 2018, 175, 1701-1715.e16. [CrossRef]


http://dx.doi.org/10.1677/jme.0.0320719
http://dx.doi.org/10.1016/j.cell.2011.03.042
http://dx.doi.org/10.3390/ijms19020306
http://dx.doi.org/10.1038/nature08497
http://www.ncbi.nlm.nih.gov/pubmed/19890323
http://dx.doi.org/10.1128/MCB.00918-13
http://www.ncbi.nlm.nih.gov/pubmed/24752895
http://dx.doi.org/10.1016/j.molonc.2008.05.004
http://dx.doi.org/10.1101/gr.101923.109
http://dx.doi.org/10.1073/pnas.95.6.2920
http://dx.doi.org/10.1101/gad.1424806
http://www.ncbi.nlm.nih.gov/pubmed/16751179
http://dx.doi.org/10.3389/fimmu.2015.00635
http://dx.doi.org/10.1177/2470289718801379
http://dx.doi.org/10.1016/j.cellimm.2015.01.018
http://dx.doi.org/10.1186/s13578-016-0111-9
http://dx.doi.org/10.1371/journal.pone.0005539
http://www.ncbi.nlm.nih.gov/pubmed/19440537
http://www.ncbi.nlm.nih.gov/pubmed/10510352
http://dx.doi.org/10.1046/j.1365-2567.2001.01212.x
http://www.ncbi.nlm.nih.gov/pubmed/11380688
http://dx.doi.org/10.1016/j.imlet.2004.10.007
http://www.ncbi.nlm.nih.gov/pubmed/15626482
http://dx.doi.org/10.1016/j.imlet.2010.06.003
http://www.ncbi.nlm.nih.gov/pubmed/20542061
http://dx.doi.org/10.1371/journal.pone.0063199
http://www.ncbi.nlm.nih.gov/pubmed/23646196
http://dx.doi.org/10.1016/j.cell.2018.10.022

Cells 2019, 8, 1280 16 of 21

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

Cunningham, M.; Gilkeson, G. Estrogen receptors in immunity and autoimmunity. Clin Rev Allergy Immunol
2011, 40, 66-73. [CrossRef]

Laffont, S.; Seillet, C.; Guéry, J.-C. Estrogen Receptor-Dependent Regulation of Dendritic Cell Development
and Function. Front. Immunol. 2017, 8, 108. [CrossRef]

Laffont, S.; Rouquié, N.; Azar, P.; Seillet, C.; Plumas, J.; Aspord, C.; Guéry, J.-C. X-Chromosome complement
and estrogen receptor signaling independently contribute to the enhanced TLR7-mediated IFN-« production
of plasmacytoid dendritic cells from women. J. [mmunol. 2014, 193, 5444-5452. [CrossRef]
Tiwari-Woodrulff, S.; Morales, L.B.J.; Lee, R.; Voskuhl, R.R. Differential neuroprotective and antiinflammatory
effects of estrogen receptor (ER)a and ER ligand treatment. PNAS 2007, 104, 14813-14818. [CrossRef]
[PubMed]

Tay, T.L.; Hagemeyer, N.; Prinz, M. The force awakens: Insights into the origin and formation of microglia.
Curr. Opin. Neurobiol. 2016, 39, 30-37. [CrossRef] [PubMed]

Villa, A.; Rizzi, N.; Vegeto, E.; Ciana, P.; Maggi, A. Estrogen accelerates the resolution of inflammation in
macrophagic cells. Sci Rep 2015, 5, 15224. [CrossRef] [PubMed]

Villa, A.; Vegeto, E.; Poletti, A.; Maggi, A. Estrogens, Neuroinflammation, and Neurodegeneration. Endocr.
Rev. 2016, 37, 372-402. [CrossRef] [PubMed]

Kim, R.Y.; Mangu, D.; Hoffman, A.S.; Kavosh, R.; Jung, E.; Itoh, N.; Voskuhl, R. Oestrogen receptor {3 ligand
acts on CD11c+ cells to mediate protection in experimental autoimmune encephalomyelitis. Brain 2018, 141,
132-147. [CrossRef]

Wu, W.; Tan, X.; Dai, Y.; Krishnan, V.; Warner, M.; Gustafsson, ].—A. Targeting estrogen receptor (3 in microglia
and T cells to treat experimental autoimmune encephalomyelitis. Proc. Natl. Acad. Sci. U.S.A. 2013, 110,
3543-3548. [CrossRef]

Benedek, G.; Zhang, J.; Nguyen, H.; Kent, G.; Seifert, H.; Vandenbark, A.A.; Offner, H. Novel feedback loop
between M2 macrophages/microglia and regulatory B cells in estrogen-protected EAE mice. | Neuroimmunol
2017, 305, 59-67. [CrossRef]

Fox, H.S.; Bond, B.L.; Parslow, T.G. Estrogen regulates the IFN-gamma promoter. J. Immunol. 1991, 146,
4362-4367.

Arellano, G.; Ottum, P.A.; Reyes, L.I.; Burgos, PI.; Naves, R. Stage-Specific Role of Interferon-Gamma
in Experimental Autoimmune Encephalomyelitis and Multiple Sclerosis. Front. Immunol. 2015, 6, 492.
[CrossRef]

Grasso, G.; Muscettola, M. The Influence of Beta-Estradiol and Progesterone on Interferon Gamma Production
in Vitro. Int. ]. Neurosci. 1990, 51, 315-317. [CrossRef]

Gilmore, W.; Weiner, L.P,; Correale, J. Effect of estradiol on cytokine secretion by proteolipid protein-specific
T cell clones isolated from multiple sclerosis patients and normal control subjects. J. Immunol. 1997, 158,
446-451. [PubMed]

Karpuzoglu, E.; Phillips, R.A.; Gogal, R M.; Ansar Ahmed, S. IFN-gamma-inducing transcription factor,
T-bet is upregulated by estrogen in murine splenocytes: Role of IL-27 but not IL-12. Mol. Immunol. 2007, 44,
1808-1814. [CrossRef] [PubMed]

Haghmorad, D.; Salehipour, Z.; Nosratabadi, R.; Rastin, M.; Kokhaei, P.; Mahmoudi, M.B.; Amini, A.A;
Mahmoudi, M. Medium-dose estrogen ameliorates experimental autoimmune encephalomyelitis in
ovariectomized mice. | Immunotoxicol 2016, 13, 885-896. [CrossRef] [PubMed]

Matalka, K.Z. The effect of estradiol, but not progesterone, on the production of cytokines in stimulated
whole blood, is concentration-dependent. Neuro Endocrinol. Lett. 2003, 24, 185-191.

Karpuzoglu-Sahin, E.; Zhi-Jun, Y.; Lengi, A.; Sriranganathan, N.; Ansar Ahmed, S. Effects of long-term
estrogen treatment on IFN-gamma, IL-2 and IL-4 gene expression and protein synthesis in spleen and thymus
of normal C57BL/6 mice. Cytokine 2001, 14, 208-217. [CrossRef]

Verthelyi, D.; Klinman, D.M. Sex hormone levels correlate with the activity of cytokine-secreting cells in vivo.
Immunology 2000, 100, 384-390. [CrossRef]

Piccinni, M.P,; Giudizi, M.G.; Biagiotti, R.; Beloni, L.; Giannarini, L.; Sampognaro, S.; Parronchi, P.; Manetti, R.;
Annunziato, F.; Livi, C. Progesterone favors the development of human T helper cells producing Th2-type
cytokines and promotes both IL-4 production and membrane CD30 expression in established Th1 cell clones.
J. Immunol. 1995, 155, 128-133.


http://dx.doi.org/10.1007/s12016-010-8203-5
http://dx.doi.org/10.3389/fimmu.2017.00108
http://dx.doi.org/10.4049/jimmunol.1303400
http://dx.doi.org/10.1073/pnas.0703783104
http://www.ncbi.nlm.nih.gov/pubmed/17785421
http://dx.doi.org/10.1016/j.conb.2016.04.003
http://www.ncbi.nlm.nih.gov/pubmed/27107946
http://dx.doi.org/10.1038/srep15224
http://www.ncbi.nlm.nih.gov/pubmed/26477569
http://dx.doi.org/10.1210/er.2016-1007
http://www.ncbi.nlm.nih.gov/pubmed/27196727
http://dx.doi.org/10.1093/brain/awx315
http://dx.doi.org/10.1073/pnas.1300313110
http://dx.doi.org/10.1016/j.jneuroim.2016.12.018
http://dx.doi.org/10.3389/fimmu.2015.00492
http://dx.doi.org/10.3109/00207459008999730
http://www.ncbi.nlm.nih.gov/pubmed/8977221
http://dx.doi.org/10.1016/j.molimm.2006.08.005
http://www.ncbi.nlm.nih.gov/pubmed/17046061
http://dx.doi.org/10.1080/1547691X.2016.1223768
http://www.ncbi.nlm.nih.gov/pubmed/27602995
http://dx.doi.org/10.1006/cyto.2001.0876
http://dx.doi.org/10.1046/j.1365-2567.2000.00047.x

Cells 2019, 8, 1280 17 of 21

88.

89.

90.

91.

92.

93.

94.

95.

96.

97.

98.

99.

100.

101.

102.

103.

104.

105.

106.

Druckmann, R.; Druckmann, M.-A. Progesterone and the immunology of pregnancy. J. Steroid Biochem. Mol.
Biol. 2005, 97, 389-396. [CrossRef]

Polanczyk, M.].; Carson, B.D.; Subramanian, S.; Afentoulis, M.; Vandenbark, A.A.; Ziegler, S.F.; Offner, H.
Cutting edge: Estrogen drives expansion of the CD4+CD25+ regulatory T cell compartment. J. Immunol.
2004, 173, 2227-2230. [CrossRef]

Iannello, A.; Rolla, S.; Maglione, A.; Ferrero, G.; Bardina, V.; Inaudi, I.; De Mercanti, S.; Novelli, F;
D’Antuono, L.; Cardaropoli, S.; et al. Pregnancy Epigenetic Signature in T Helper 17 and T Regulatory Cells
in Multiple Sclerosis. Front. Immunol. 2019, 9. [CrossRef]

Prieto, G.A.; Rosenstein, Y. Oestradiol potentiates the suppressive function of human CD4 CD25 regulatory
T cells by promoting their proliferation. Immunology 2006, 118, 58-65. [CrossRef] [PubMed]

Polanczyk, M.J.; Hopke, C.; Huan, J.; Vandenbark, A.A_; Offner, H. Enhanced FoxP3 expression and Treg cell
function in pregnant and estrogen-treated mice. J. Neuroimmunol. 2005, 170, 85-92. [CrossRef]

Polanczyk, M.J.; Hopke, C.; Vandenbark, A.A.; Offner, H. Treg suppressive activity involves
estrogen-dependent expression of programmed death-1 (PD-1). Int. Immunol. 2007, 19, 337-343. [CrossRef]
[PubMed]

Kebir, H.; Ifergan, 1.; Alvarez, ]J.I; Bernard, M.; Poirier, J.; Arbour, N.; Duquette, P; Prat, A. Preferential
recruitment of interferon-gamma-expressing TH17 cells in multiple sclerosis. Ann. Neurol. 2009, 66, 390-402.
[CrossRef]

Molnar, I.; Bohaty, I.; Somogyiné-Vari, E. High prevalence of increased interleukin-17A serum levels in
postmenopausal estrogen deficiency. Menopause 2014, 21, 749-752. [CrossRef] [PubMed]

McClain, M.A.; Gatson, N.N.; Powell, N.D.; Papenfuss, T.L.; Gienapp, LE.; Song, F; Shawler, TM.;
Kithcart, A.; Whitacre, C.C. Pregnancy suppresses experimental autoimmune encephalomyelitis through
immunoregulatory cytokine production. J. Immunol. 2007, 179, 8146-8152. [CrossRef]

Gatson, N.N.; Williams, J.L.; Powell, N.D.; McClain, M.A.; Hennon, T.R.; Robbins, P.D.; Whitacre, C.C.
Induction of pregnancy during established EAE halts progression of CNS autoimmune injury via
pregnancy-specific serum factors. | Neuroimmunol 2011, 230, 105-113. [CrossRef]

Ito, A.; Bebo, B.F; Matejuk, A.; Zamora, A.; Silverman, M.; Fyfe-Johnson, A.; Offner, H. Estrogen
treatment down-regulates TNF-alpha production and reduces the severity of experimental autoimmune
encephalomyelitis in cytokine knockout mice. J. Immunol. 2001, 167, 542-552. [CrossRef]

Wang, C.; Dehghani, B.; Li, Y.; Kaler, L.J.; Vandenbark, A.A.; Offner, H. Oestrogen modulates experimental
autoimmune encephalomyelitis and interleukin-17 production via programmed death 1. Immunology 2009,
126, 329-335. [CrossRef]

Polanczyk, M.; Zamora, A.; Subramanian, S.; Matejuk, A.; Hess, D.L.; Blankenhorn, E.P.; Teuscher, C.;
Vandenbark, A.A.; Offner, H. The Protective Effect of 173-Estradiol on Experimental Autoimmune
Encephalomyelitis Is Mediated through Estrogen Receptor-«. Am . Pathol. 2003, 163, 1599-1605. [CrossRef]
Lélu, K,; Laffont, S.; Delpy, L.; Paulet, P-E.; Périnat, T.; Tschanz, S.A.; Pelletier, L.; Engelhardt, B.; Guéry, ].-C.
Estrogen receptor « signaling in T lymphocytes is required for estradiol-mediated inhibition of Th1l and
Th17 cell differentiation and protection against experimental autoimmune encephalomyelitis. J. Immunol.
2011, 187, 2386-2393. [CrossRef] [PubMed]

Hill, L.; Jeganathan, V.; Chinnasamy, P.; Grimaldi, C.; Diamond, B. Differential roles of estrogen receptors o
and f in control of B-cell maturation and selection. Mol. Med. 2011, 17, 211-220. [CrossRef] [PubMed]
Verthelyi, D.I.; Ahmed, S.A. Estrogen increases the number of plasma cells and enhances their autoantibody
production in nonautoimmune C57BL/6 mice. Cell. Immunol. 1998, 189, 125-134. [CrossRef] [PubMed]
Jones, B.G.; Sealy, R.E.; Penkert, R.R.; Surman, S.L.; Maul, RW.; Neale, G.; Xu, B.; Gearhart, PJ.; Hurwitz, J.L.
Complex sex-biased antibody responses: Estrogen receptors bind estrogen response elements centered
within immunoglobulin heavy chain gene enhancers. Int. Immunol 2019, 31, 141-156. [CrossRef] [PubMed]
Grimaldi, C.M.; Cleary, J.; Dagtas, A.S.; Moussai, D.; Diamond, B. Estrogen alters thresholds for B cell
apoptosis and activation. J. Clin. Invest. 2002, 109, 1625-1633. [CrossRef]

Benedek, G.; Zhang, J.; Bodhankar, S.; Nguyen, H.; Kent, G.; Jordan, K.; Manning, D.; Vandenbark, A.A.;
Offner, H. Estrogen induces multiple regulatory B cell subtypes and promotes M2 microglia and
neuroprotection during experimental autoimmune encephalomyelitis. J. Neuroimmunol. 2016, 293, 45-53.
[CrossRef]


http://dx.doi.org/10.1016/j.jsbmb.2005.08.010
http://dx.doi.org/10.4049/jimmunol.173.4.2227
http://dx.doi.org/10.3389/fimmu.2018.03075
http://dx.doi.org/10.1111/j.1365-2567.2006.02339.x
http://www.ncbi.nlm.nih.gov/pubmed/16630023
http://dx.doi.org/10.1016/j.jneuroim.2005.08.023
http://dx.doi.org/10.1093/intimm/dxl151
http://www.ncbi.nlm.nih.gov/pubmed/17267414
http://dx.doi.org/10.1002/ana.21748
http://dx.doi.org/10.1097/GME.0000000000000125
http://www.ncbi.nlm.nih.gov/pubmed/24253487
http://dx.doi.org/10.4049/jimmunol.179.12.8146
http://dx.doi.org/10.1016/j.jneuroim.2010.09.010
http://dx.doi.org/10.4049/jimmunol.167.1.542
http://dx.doi.org/10.1111/j.1365-2567.2008.03051.x
http://dx.doi.org/10.1016/S0002-9440(10)63516-X
http://dx.doi.org/10.4049/jimmunol.1101578
http://www.ncbi.nlm.nih.gov/pubmed/21810607
http://dx.doi.org/10.2119/molmed.2010.00172
http://www.ncbi.nlm.nih.gov/pubmed/21107497
http://dx.doi.org/10.1006/cimm.1998.1372
http://www.ncbi.nlm.nih.gov/pubmed/9790726
http://dx.doi.org/10.1093/intimm/dxy074
http://www.ncbi.nlm.nih.gov/pubmed/30407507
http://dx.doi.org/10.1172/JCI0214873
http://dx.doi.org/10.1016/j.jneuroim.2016.02.009

Cells 2019, 8, 1280 18 of 21

107.

108.

109.

110.

111.

112.

113.

114.

115.

116.

117.

118.

119.

120.

121.

122.

123.

124.

Fettke, F.; Schumacher, A.; Costa, S.-D.; Zenclussen, A.C. B Cells: The Old New Players in Reproductive
Immunology. Front. Immunol. 2014, 5. [CrossRef]

Molnarfi, N.; Schulze-Topphoff, U.; Weber, M.S.; Patarroyo, J.C.; Prod’homme, T.; Varrin-Doyer, M.; Shetty, A.;
Linington, C.; Slavin, A.].; Hidalgo, J.; et al. MHC class II-dependent B cell APC function is required for
induction of CNS autoimmunity independent of myelin-specific antibodies. J. Exp. Med. 2013, 210, 2921-2937.
[CrossRef]

Lehmann-Horn, K.; Kinzel, S.; Weber, M.S. Deciphering the Role of B Cells in Multiple Sclerosis-Towards
Specific Targeting of Pathogenic Function. Int. J. Mol. Sci. 2017, 18. [CrossRef]

Bodhankar, S.; Wang, C.; Vandenbark, A.A.; Offner, H. Estrogen-induced protection against experimental
autoimmune encephalomyelitis is abrogated in the absence of B cells. Eur. |. Immunol. 2011, 41, 1165-1175.
[CrossRef]

Matsushita, T.; Yanaba, K.; Bouaziz, J.-D.; Fujimoto, M.; Tedder, T.F. Regulatory B cells inhibit EAE initiation
in mice while other B cells promote disease progression. J. Clin. Invest. 2008, 118, 3420-3430. [CrossRef]
[PubMed]

Zhang, ].; Benedek, G.; Bodhankar, S.; Lapato, A.; Vandenbark, A.A.; Offner, H. IL-10 producing B cells
partially restore E2-mediated protection against EAE in PD-L1 deficient mice. J. Neuroimmunol. 2015, 285,
129-136. [CrossRef] [PubMed]

Cuzzocrea, S.; Genovese, T.; Mazzon, E.; Esposito, E.; Di Paola, R.; Muia, C.; Crisafulli, C.; Peli, A,;
Bramanti, P.; Chaudry, I.H. Effect of 17beta-estradiol on signal transduction pathways and secondary damage
in experimental spinal cord trauma. Shock 2008, 29, 362-371. [PubMed]

Yu, H.-P; Hsieh, Y.-C.; Suzuki, T.; Choudhry, M.A.; Schwacha, M.G.; Bland, K.I.; Chaudry, I.H. Mechanism of
the nongenomic effects of estrogen on intestinal myeloperoxidase activity following trauma-hemorrhage:
Up-regulation of the PI-3K/Akt pathway. J. Leukoc. Biol. 2007, 82, 774-780. [CrossRef]

Hsieh, C.-H.; Nickel, E.A.; Chen, J.; Schwacha, M.G.; Choudhry, M.A; Bland, K.I.; Chaudry, I.H. Mechanism
of the Salutary Effects of Estrogen on Kupffer Cell Phagocytic Capacity following Trauma-Hemorrhage:
Pivotal Role of Akt Activation. J. Immunol. 2009, 182, 4406. [CrossRef] [PubMed]

Liu, H.Y.; Buenafe, A.C.; Matejuk, A.; Ito, A.; Zamora, A.; Dwyer, ].; Vandenbark, A.A.; Offner, H. Estrogen
inhibition of EAE involves effects on dendritic cell function. J. Neurosci. Res. 2002, 70, 238-248. [CrossRef]
Bachy, V.; Williams, D.J.; Ibrahim, M.a.A. Altered dendritic cell function in normal pregnancy. J. Reprod.
Immunol. 2008, 78, 11-21. [CrossRef]

Papenfuss, T.L.; Powell, N.D.; McClain, M.A; Bedarf, A ; Singh, A.; Gienapp, LE.; Shawler, T.; Whitacre, C.C.
Estriol generates tolerogenic dendritic cells in vivo that protect against autoimmunity. J. Immunol. 2011, 186,
3346-3355. [CrossRef]

Bengtsson, A.K,; Ryan, E.J.; Giordano, D.; Magaletti, D.M.; Clark, E.A. 17beta-estradiol (E2) modulates
cytokine and chemokine expression in human monocyte-derived dendritic cells. Blood 2004, 104, 1404-1410.
[CrossRef]

Habib, P; Dreymueller, D.; Rosing, B.; Botung, H.; Slowik, A.; Zendedel, A.; Habib, S.; Hoffmann, S.; Beyer, C.
Estrogen serum concentration affects blood immune cell composition and polarization in human females
under controlled ovarian stimulation. J. Steroid Biochem. Mol. Biol. 2018, 178, 340-347. [CrossRef]

Hao, S.; Zhao, J.; Zhou, J.; Zhao, S.; Hu, Y.; Hou, Y. Modulation of 17beta-estradiol on the number and
cytotoxicity of NK cells in vivo related to MCM and activating receptors. Int. Immunopharmacol. 2007, 7,
1765-1775. [CrossRef] [PubMed]

de Andrés, C.; Fernandez-Paredes, L.; Tejera-Alhambra, M.; Alonso, B.; Ramos-Medina, R.; Sanchez-Ramon, S.
Activation of Blood CD3+CD56+CD8+ T Cells during Pregnancy and Multiple Sclerosis. Front. Immunol.
2017, 8. [CrossRef] [PubMed]

Haghmorad, D.; Amini, A.A.; Mahmoudi, M.B.; Rastin, M.; Hosseini, M.; Mahmoudi, M. Pregnancy level
of estrogen attenuates experimental autoimmune encephalomyelitis in both ovariectomized and pregnant
C57BL/6 mice through expansion of Treg and Th2 cells. |. Neuroimmunol. 2014, 277, 85-95. [CrossRef]
[PubMed]

Benedek, G.; Zhang, J.; Nguyen, H.; Kent, G.; Seifert, H.A.; Davin, S.; Stauffer, P.; Vandenbark, A.A;
Karstens, L.; Asquith, M.; et al. Estrogen protection against EAE modulates the microbiota and
mucosal-associated regulatory cells. J. Neuroimmunol. 2017, 310, 51-59. [CrossRef] [PubMed]


http://dx.doi.org/10.3389/fimmu.2014.00285
http://dx.doi.org/10.1084/jem.20130699
http://dx.doi.org/10.3390/ijms18102048
http://dx.doi.org/10.1002/eji.201040992
http://dx.doi.org/10.1172/JCI36030
http://www.ncbi.nlm.nih.gov/pubmed/18802481
http://dx.doi.org/10.1016/j.jneuroim.2015.06.002
http://www.ncbi.nlm.nih.gov/pubmed/26198929
http://www.ncbi.nlm.nih.gov/pubmed/17704735
http://dx.doi.org/10.1189/jlb.0307182
http://dx.doi.org/10.4049/jimmunol.0803423
http://www.ncbi.nlm.nih.gov/pubmed/19299741
http://dx.doi.org/10.1002/jnr.10409
http://dx.doi.org/10.1016/j.jri.2007.09.004
http://dx.doi.org/10.4049/jimmunol.1001322
http://dx.doi.org/10.1182/blood-2003-10-3380
http://dx.doi.org/10.1016/j.jsbmb.2018.02.005
http://dx.doi.org/10.1016/j.intimp.2007.09.017
http://www.ncbi.nlm.nih.gov/pubmed/17996687
http://dx.doi.org/10.3389/fimmu.2017.00196
http://www.ncbi.nlm.nih.gov/pubmed/28280497
http://dx.doi.org/10.1016/j.jneuroim.2014.10.004
http://www.ncbi.nlm.nih.gov/pubmed/25457839
http://dx.doi.org/10.1016/j.jneuroim.2017.06.007
http://www.ncbi.nlm.nih.gov/pubmed/28778445

Cells 2019, 8, 1280 19 of 21

125.

126.

127.

128.

129.

130.

131.

132.

133.

134.

135.

136.

137.

138.

139.

140.

141.

142.

143.

Garnier, L.; Laffont, S.; Lélu, K.; Yogev, N.; Waisman, A.; Guéry, J.-C. Estrogen Signaling in Bystander
Foxp3neg CD4+ T Cells Suppresses Cognate Th17 Differentiation in Trans and Protects from Central Nervous
System Autoimmunity. J. Immunol. 2018, 201, 3218-3228. [CrossRef] [PubMed]

Kim, D.H.; Park, H.].; Park, H.S; Lee, ].U.; Ko, C.; Gye, M.C.; Choi, ].M. Estrogen receptor « in T cells
suppresses follicular helper T cell responses and prevents autoimmunity. Exp. Mol. Med. 2019, 51, 41.
[CrossRef] [PubMed]

Karim, H.; Kim, S.H.; Lapato, A.S.; Yasui, N.; Katzenellenbogen, J.A.; Tiwari-Woodruff, S.K. Increase in
chemokine CXCL1 by ERp ligand treatment is a key mediator in promoting axon myelination. PNAS 2018,
115, 6291-6296. [CrossRef]

DuPage, M.; Bluestone, J.A. Harnessing the plasticity of CD4(+) T cells to treat immune-mediated disease.
Nat. Rev. Immunol. 2016, 16, 149-163. [CrossRef]

Yosef, N.; Regev, A. Writ large: Genomic dissection of the effect of cellular environment on immune response.
Science 2016, 354, 64—68. [CrossRef]

Mukasa, R.; Balasubramani, A.; Lee, Y.K.; Whitley, S.K.; Weaver, B.T.; Shibata, Y.; Crawford, G.E.; Hatton, R.D.;
Weaver, C.T. Epigenetic instability of cytokine and transcription factor gene loci underlies plasticity of the T
helper 17 cell lineage. Immunity 2010, 32, 616—627. [CrossRef]

Wei, G.; Wei, L.; Zhu, J.; Zang, C.; Hu-Li, J.; Yao, Z.; Cui, K,; Kanno, Y.; Roh, T.-Y.; Watford, W.T.; et al. Global
mapping of H3K4me3 and H3K27me3 reveals specificity and plasticity in lineage fate determination of
differentiating CD4+ T cells. Immunity 2009, 30, 155-167. [CrossRef] [PubMed]

Schmidl, C.; Delacher, M.; Huehn, J.; Feuerer, M. Epigenetic mechanisms regulating T-cell responses. J. Allergy
Clin. Immunol. 2018, 142, 728-743. [CrossRef] [PubMed]

Noack, M.; Miossec, P. Th17 and regulatory T cell balance in autoimmune and inflammatory diseases.
Autoimmun Rev 2014, 13, 668-677. [CrossRef] [PubMed]

Kleinewietfeld, M.; Hafler, D.A. The plasticity of human Treg and Th17 cells and its role in autoimmunity.
Semin. Immunol. 2013, 25, 305-312. [CrossRef]

Rudra, D.; deRoos, P; Chaudhry, A.; Niec, REE.; Arvey, A.; Samstein, RM.; Leslie, C.; Shaffer, S.A,;
Goodlett, D.R.; Rudensky, A.Y. Transcription factor Foxp3 and its protein partners form a complex regulatory
network. Nat. Immunol. 2012, 13, 1010-1019. [CrossRef]

Yosef, N.; Shalek, A.K.; Gaublomme, J.T.; Jin, H.; Lee, Y.; Awasthi, A.; Wu, C.; Karwacz, K.; Xiao, S.;
Jorgolli, M.; et al. Dynamic regulatory network controlling TH17 cell differentiation. Nature 2013, 496,
461-468. [CrossRef]

Ciofani, M.; Madar, A.; Galan, C.; Sellars, M.; Mace, K.; Pauli, F.; Agarwal, A.; Huang, W.; Parkhurst, C.N.;
Muratet, M.; et al. A validated regulatory network for Th17 cell specification. Cell 2012, 151, 289-303.
[CrossRef]

Guan, H.; Nagarkatti, P.S.; Nagarkatti, M. CD44 Reciprocally regulates the differentiation of encephalitogenic
Th1/Th17 and Th2/regulatory T cells through epigenetic modulation involving DNA methylation of cytokine
gene promoters, thereby controlling the development of experimental autoimmune encephalomyelitis.
J. Immunol. 2011, 186, 6955-6964.

Coquet, ].M.; Middendorp, S.; van der Horst, G.; Kind, J.; Veraar, E.A.M.; Xiao, Y.; Jacobs, H.; Borst, J.
The CD27 and CD70 costimulatory pathway inhibits effector function of T helper 17 cells and attenuates
associated autoimmunity. Immunity 2013, 38, 53—-65. [CrossRef]

Feng, Y,; Arvey, A.; Chinen, T.; van der Veeken, J.; Gasteiger, G.; Rudensky, A.Y. Control of the inheritance of
regulatory T cell identity by a cis element in the Foxp3 locus. Cell 2014, 158, 749-763. [CrossRef]

Zheng, Y.; Josefowicz, S.; Chaudhry, A.; Peng, X.P,; Forbush, K.; Rudensky, A.Y. Role of conserved non-coding
DNA elements in the Foxp3 gene in regulatory T-cell fate. Nature 2010, 463, 808-812. [CrossRef] [PubMed]
Li, X.; Liang, Y.; LeBlanc, M.; Benner, C.; Zheng, Y. Function of a Foxp3 cis-element in protecting regulatory T
cell identity. Cell 2014, 158, 734-748. [CrossRef] [PubMed]

Yue, X.; Trifari, S.; Aijé, T.; Tsagaratou, A.; Pastor, W.A.; Zepeda-Martinez, ].A.; Lio, C.-W.J.; Li, X.; Huang, Y.;
Vijayanand, P; et al. Control of Foxp3 stability through modulation of TET activity. J. Exp. Med. 2016, 213,
377-397. [CrossRef] [PubMed]


http://dx.doi.org/10.4049/jimmunol.1800417
http://www.ncbi.nlm.nih.gov/pubmed/30355786
http://dx.doi.org/10.1038/s12276-019-0237-z
http://www.ncbi.nlm.nih.gov/pubmed/30988419
http://dx.doi.org/10.1073/pnas.1721732115
http://dx.doi.org/10.1038/nri.2015.18
http://dx.doi.org/10.1126/science.aaf5453
http://dx.doi.org/10.1016/j.immuni.2010.04.016
http://dx.doi.org/10.1016/j.immuni.2008.12.009
http://www.ncbi.nlm.nih.gov/pubmed/19144320
http://dx.doi.org/10.1016/j.jaci.2018.07.014
http://www.ncbi.nlm.nih.gov/pubmed/30195378
http://dx.doi.org/10.1016/j.autrev.2013.12.004
http://www.ncbi.nlm.nih.gov/pubmed/24418308
http://dx.doi.org/10.1016/j.smim.2013.10.009
http://dx.doi.org/10.1038/ni.2402
http://dx.doi.org/10.1038/nature11981
http://dx.doi.org/10.1016/j.cell.2012.09.016
http://dx.doi.org/10.1016/j.immuni.2012.09.009
http://dx.doi.org/10.1016/j.cell.2014.07.031
http://dx.doi.org/10.1038/nature08750
http://www.ncbi.nlm.nih.gov/pubmed/20072126
http://dx.doi.org/10.1016/j.cell.2014.07.030
http://www.ncbi.nlm.nih.gov/pubmed/25126782
http://dx.doi.org/10.1084/jem.20151438
http://www.ncbi.nlm.nih.gov/pubmed/26903244

Cells 2019, 8, 1280 20 of 21

144.

145.

146.

147.

148.

149.

150.

151.

152.

153.

154.

155.

156.

157.

158.

159.

160.

Ohkura, N.; Hamaguchi, M.; Morikawa, H.; Sugimura, K.; Tanaka, A.; Ito, Y.; Osaki, M.; Tanaka, Y,;
Yamashita, R.; Nakano, N.; et al. T cell receptor stimulation-induced epigenetic changes and Foxp3
expression are independent and complementary events required for Treg cell development. Immunity 2012,
37,785-799. [CrossRef]

Polansky, J.K.; Kretschmer, K.; Freyer, J.; Floess, S.; Garbe, A.; Baron, U.; Olek, S.; Hamann, A.; von
Boehmer, H.; Huehn, J. DNA methylation controls Foxp3 gene expression. Eur. ]. Immunol. 2008, 38,
1654-1663. [CrossRef]

Samstein, R.M.; Arvey, A.; Josefowicz, S.Z.; Peng, X.; Reynolds, A.; Sandstrom, R.; Neph, S.; Sabo, P;
Kim, J.M.; Liao, W.; et al. Foxp3 exploits a pre-existent enhancer landscape for regulatory T cell lineage
specification. Cell 2012, 151, 153-166. [CrossRef]

Kitagawa, Y.; Ohkura, N.; Kidani, Y.; Vandenbon, A.; Hirota, K.; Kawakami, R.; Yasuda, K.; Motooka, D.;
Nakamura, S.; Kondo, M.; et al. Guidance of regulatory T cell development by Satbl-dependent
super-enhancer establishment. Nat. Immunol. 2017, 18, 173-183. [CrossRef]

Morikawa, H.; Ohkura, N.; Vandenbon, A.; Itoh, M.; Nagao-Sato, S.; Kawaji, H.; Lassmann, T.; Carninci, P,;
Hayashizaki, Y.; Forrest, ARR,; et al. Differential roles of epigenetic changes and Foxp3 expression in
regulatory T cell-specific transcriptional regulation. Proc. Natl. Acad. Sci. U.S.A. 2014, 111, 5289-5294.
[CrossRef]

Nakatsukasa, H.; Oda, M.; Yin, J.; Chikuma, S.; Ito, M.; Koga-lizuka, M.; Someya, K.; Kitagawa, Y.; Ohkura, N.;
Sakaguchi, S.; et al. Loss of TET proteins in regulatory T cells promotes abnormal proliferation, Foxp3
destabilization and IL-17 expression. Int. Immunol. 2019, 31, 335-347. [CrossRef]

Garg, G.; Muschaweckh, A.; Moreno, H.; Vasanthakumar, A.; Floess, S.; Lepennetier, G.; Oellinger, R.;
Zhan, Y.; Regen, T.; Hiltensperger, M.; et al. Blimp1 Prevents Methylation of Foxp3 and Loss of Regulatory T
Cell Identity at Sites of Inflammation. Cell Rep. 2019, 26, 1854-1868.e5. [CrossRef]

Schmidl, C.; Hansmann, L.; Andreesen, R.; Edinger, M.; Hoffmann, P.; Rehli, M. Epigenetic reprogramming
of the RORC locus during in vitro expansion is a distinctive feature of human memory but not naive Treg.
Eur. J. Immunol. 2011, 41, 1491-1498. [CrossRef] [PubMed]

Chen, R.-Y,; Fan, Y.-M.; Zhang, Q.; Liu, S.; Li, Q.; Ke, G.-L.; Li, C.; You, Z. Estradiol inhibits Th17 cell
differentiation through inhibition of RORYT transcription by recruiting the ERa/REA complex to estrogen
response elements of the RORYT promoter. J. Immunol. 2015, 194, 4019-4028. [CrossRef] [PubMed]

Sicotte, N.L.; Liva, S.M.; Klutch, R.; Pfeiffer, P.; Bouvier, S.; Odesa, S.; Wu, T.C.J.; Voskuhl, R.R. Treatment of
multiple sclerosis with the pregnancy hormone estriol. Ann. Neurol. 2002, 52, 421-428. [CrossRef] [PubMed]
Voskuhl, R.R.; Wang, H.; Wu, T.C.J; Sicotte, N.L.; Nakamura, K.; Kurth, F; Itoh, N.; Bardens, J.; Bernard, ].T.;
Corboy, J.R,; et al. Estriol combined with glatiramer acetate for women with relapsing-remitting multiple
sclerosis: A randomised, placebo-controlled, phase 2 trial. Lancet Neurol 2016, 15, 35-46. [CrossRef]
Vukusic, S.; Ionescu, 1.; El-Etr, M.; Schumacher, M.; Baulieu, E.E.; Cornu, C.; Confavreux, C.; Prevention of
Post-Partum Relapses with Progestin and Estradiol in Multiple Sclerosis Study Group. The Prevention of
Post-Partum Relapses with Progestin and Estradiol in Multiple Sclerosis (POPART’MUS) trial: Rationale,
objectives and state of advancement. |. Neurol. Sci. 2009, 286, 114-118. [CrossRef] [PubMed]

Pozzilli, C.; De Giglio, L.; Barletta, V.T.; Marinelli, F.; Angelis, ED.; Gallo, V.; Pagano, V.A.; Marini, S.;
Piattella, M.C.; Tomassini, V.; et al. Oral contraceptives combined with interferon {3 in multiple sclerosis.
Neurol Neuroimmunol Neuroinflamm 2015, 2. [CrossRef] [PubMed]

Christianson, M.S.; Mensah, V.A.; Shen, W. Multiple sclerosis at menopause: Potential neuroprotective effects
of estrogen. Maturitas 2015, 80, 133-139. [CrossRef]

Smith, R.; Studd, J.W. A pilot study of the effect upon multiple sclerosis of the menopause, hormone
replacement therapy and the menstrual cycle. J. R. Soc. Med. 1992, 85, 612-613. [CrossRef]

Schirmer, L.; Velmeshev, D.; Holmqvist, S.; Kaufmann, M.; Werneburg, S.; Jung, D.; Vistnes, S.; Stockley, J.H.;
Young, A.; Steindel, M.; et al. Neuronal vulnerability and multilineage diversity in multiple sclerosis. Nature
2019, 573, 75-82. [CrossRef]

Jakel, S.; Agirre, E.; Mendanha Falcao, A.; van Bruggen, D.; Lee, KW.; Knuesel, I.; Malhotra, D.;
Ffrench-Constant, C.; Williams, A.; Castelo-Branco, G. Altered human oligodendrocyte heterogeneity
in multiple sclerosis. Nature 2019, 566, 543-547. [CrossRef]


http://dx.doi.org/10.1016/j.immuni.2012.09.010
http://dx.doi.org/10.1002/eji.200838105
http://dx.doi.org/10.1016/j.cell.2012.06.053
http://dx.doi.org/10.1038/ni.3646
http://dx.doi.org/10.1073/pnas.1312717110
http://dx.doi.org/10.1093/intimm/dxz008
http://dx.doi.org/10.1016/j.celrep.2019.01.070
http://dx.doi.org/10.1002/eji.201041067
http://www.ncbi.nlm.nih.gov/pubmed/21469109
http://dx.doi.org/10.4049/jimmunol.1400806
http://www.ncbi.nlm.nih.gov/pubmed/25769926
http://dx.doi.org/10.1002/ana.10301
http://www.ncbi.nlm.nih.gov/pubmed/12325070
http://dx.doi.org/10.1016/S1474-4422(15)00322-1
http://dx.doi.org/10.1016/j.jns.2009.08.056
http://www.ncbi.nlm.nih.gov/pubmed/19758607
http://dx.doi.org/10.1212/NXI.0000000000000120
http://www.ncbi.nlm.nih.gov/pubmed/26140279
http://dx.doi.org/10.1016/j.maturitas.2014.11.013
http://dx.doi.org/10.1016/0378-5122(93)90087-X
http://dx.doi.org/10.1038/s41586-019-1404-z
http://dx.doi.org/10.1038/s41586-019-0903-2

Cells 2019, 8, 1280 21 of 21

161. Yeung, M.S.Y.; Djelloul, M.; Steiner, E.; Bernard, S.; Salehpour, M.; Possnert, G.; Brundin, L.; Frisén, J.
Publisher Correction: Dynamics of oligodendrocyte generation in multiple sclerosis. Nature 2019, 566, E9.
[CrossRef] [PubMed]

162. Montalban, X.; Gold, R.; Thompson, A.J.; Otero-Romero, S.; Amato, M.P.; Chandraratna, D.; Clanet, M.;
Comi, G.; Derfuss, T.; Fazekas, F.; et al. ECTRIMS/EAN Guideline on the pharmacological treatment of
people with multiple sclerosis. Mult. Scler. 2018, 24, 96-120. [CrossRef] [PubMed]

@ © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http://creativecommons.org/licenses/by/4.0/).



http://dx.doi.org/10.1038/s41586-019-0935-7
http://www.ncbi.nlm.nih.gov/pubmed/30723267
http://dx.doi.org/10.1177/1352458517751049
http://www.ncbi.nlm.nih.gov/pubmed/29353550
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Estrogens 
	Estrogen Effects on the Immune System: Focus on MS 
	Innate Immune Cells 
	T Cells 
	B Cells 

	Estrogens Modulate the T Helper Epigenome in MS 
	Estrogens as a Potential MS Therapy 
	Conclusions 
	References

