55 research outputs found
Geometry of manifolds with area metric: multi-metric backgrounds
We construct the differential geometry of smooth manifolds equipped with an
algebraic curvature map acting as an area measure. Area metric geometry
provides a spacetime structure suitable for the discussion of gauge theories
and strings, and is considerably more general than Lorentzian geometry. Our
construction of geometrically relevant objects, such as an area metric
compatible connection and derived tensors, makes essential use of a
decomposition theorem due to Gilkey, whereby we generate the area metric from a
finite collection of metrics. Employing curvature invariants for multi-metric
backgrounds we devise a class of gravity theories with inherently stringy
character, and discuss gauge matter actions.Comment: 34 pages, REVTeX4, journal versio
Thermoelectric effects in superconducting proximity structures
Attaching a superconductor in good contact with a normal metal makes rise to
a proximity effect where the superconducting correlations leak into the normal
metal. An additional contact close to the first one makes it possible to carry
a supercurrent through the metal. Forcing this supercurrent flow along with an
additional quasiparticle current from one or many normal-metal reservoirs makes
rise to many interesting effects. The supercurrent can be used to tune the
local energy distribution function of the electrons. This mechanism also leads
to finite thermoelectric effects even in the presence of electron-hole
symmetry. Here we review these effects and discuss to which extent the existing
observations of thermoelectric effects in metallic samples can be explained
through the use of the dirty-limit quasiclassical theory.Comment: 14 pages, 10 figures. 374th WE-Heraus seminar: Spin physics of
superconducting heterostructures, Bad Honnef, 200
Size Doesn't Matter: Towards a More Inclusive Philosophy of Biology
notes: As the primary author, O’Malley drafted the paper, and gathered and analysed data (scientific papers and talks). Conceptual analysis was conducted by both authors.publication-status: Publishedtypes: ArticlePhilosophers of biology, along with everyone else, generally perceive life to fall into two broad categories, the microbes and macrobes, and then pay most of their attention to the latter. ‘Macrobe’ is the word we propose for larger life forms, and we use it as part of an argument for microbial equality. We suggest that taking more notice of microbes – the dominant life form on the planet, both now and throughout evolutionary history – will transform some of the philosophy of biology’s standard ideas on ontology, evolution, taxonomy and biodiversity. We set out a number of recent developments in microbiology – including biofilm formation, chemotaxis, quorum sensing and gene transfer – that highlight microbial capacities for cooperation and communication and break down conventional thinking that microbes are solely or primarily single-celled organisms. These insights also bring new perspectives to the levels of selection debate, as well as to discussions of the evolution and nature of multicellularity, and to neo-Darwinian understandings of evolutionary mechanisms. We show how these revisions lead to further complications for microbial classification and the philosophies of systematics and biodiversity. Incorporating microbial insights into the philosophy of biology will challenge many of its assumptions, but also give greater scope and depth to its investigations
Newborn Magnetars as sources of Gravitational Radiation: constraints from High Energy observations of Magnetar Candidates
Soft Gamma Repeaters and the Anomalous X-ray Pulsars are believed to contain
slowly spinning "magnetars". The enormous energy liberated in the 2004 Dece 27
giant flare from SGR 1806-20, together with the likely recurrence time of such
events, points to an internal magnetic field strength ~ 10^{16} G. Such strong
fields are expected to be generated by a coherent alpha-Omega dynamo in the
early seconds after the Neutron Star formation, if its spin period is of a few
milliseconds at most. A substantial deformation of the NS is caused by such
fields and a newborn millisecond-spinning magnetar would thus radiate for a few
days a strong gravitational wave signal. Such a signal may be detected with
Advanced LIGO-class detectors up to the distance of the Virgo cluster, where ~
1 magnetar per year are expected to form. Recent X-ray observations reveal that
SNRs around magnetar candidates do not show evidence for a larger energy
content than standard SNRs (Vink & Kuiper 2006). This is at variance with what
would be expected if the spin energy of the young, millisecond NS were radiated
away as electromagnetic radiation andd/or relativistic particle winds and,
thus, transferred quickly to the expanding gas shell. We show here that these
recent findings can be reconciled with the idea of magnetars being formed with
fast spins, if most of their initial spin energy is radiated thorugh GWs. In
particular, we find that this occurs for essentially the same parameter range
that would make such objects detectable by Advanced LIGO-class detectors up to
the Virgo Cluster.Comment: Proceedings of the Conference "Isolated Neutron stars: from the
interior to the surface", Eds. D. Page, R. Turolla, S. Zan
Multi-ancestry GWAS of the electrocardiographic PR interval identifies 202 loci underlying cardiac conduction
The electrocardiographic PR interval reflects atrioventricular conduction, and is associated with conduction abnormalities, pacemaker implantation, atrial fibrillation (AF), and cardiovascular mortality. Here we report a multi-ancestry (N = 293,051) genome-wide association meta-analysis for the PR interval, discovering 202 loci of which 141 have not previously been reported. Variants at identified loci increase the percentage of heritability explained, from 33.5% to 62.6%. We observe enrichment for cardiac muscle developmental/contractile and cytoskeletal genes, highlighting key regulation processes for atrioventricular conduction. Additionally, 8 loci not previously reported harbor genes underlying inherited arrhythmic syndromes and/or cardiomyopathies suggesting a role for these genes in cardiovascular pathology in the general population. We show that polygenic predisposition to PR interval duration is an endophenotype for cardiovascular disease, including distal conduction disease, AF, and atrioventricular pre-excitation. These findings advance our understanding of the polygenic basis of cardiac conduction, and the genetic relationship between PR interval duration and cardiovascular disease
Scientific and Ethical Concerns in Clinical Trials in Alzheimer's Patients: The Bridging Study
- …
