135 research outputs found

    Effects of finite arm-length of LISA on analysis of gravitational waves from MBH binaries

    Get PDF
    Response of an interferometer becomes complicated for gravitational wave shorter than the arm-length of the detector, as nature of wave appears strongly. We have studied how parameter estimation for merging massive black hole binaries are affected by this complicated effect in the case of LISA. It is shown that three dimensional positions of some binaries might be determined much better than the past estimations that use the long wave approximation. For equal mass binaries this improvement is most prominent at \sim 10^5\sol.Comment: 10 pages, 3 figures, to appear in Phys.Rev.

    Algebraic approach to time-delay data analysis for LISA

    Get PDF
    Cancellation of laser frequency noise in interferometers is crucial for attaining the requisite sensitivity of the triangular 3-spacecraft LISA configuration. Raw laser noise is several orders of magnitude above the other noises and thus it is essential to bring it down to the level of other noises such as shot, acceleration, etc. Since it is impossible to maintain equal distances between spacecrafts, laser noise cancellation must be achieved by appropriately combining the six beams with appropriate time-delays. It has been shown in several recent papers that such combinations are possible. In this paper, we present a rigorous and systematic formalism based on algebraic geometrical methods involving computational commutative algebra, which generates in principle {\it all} the data combinations cancelling the laser frequency noise. The relevant data combinations form the first module of syzygies, as it is called in the literature of algebraic geometry. The module is over a polynomial ring in three variables, the three variables corresponding to the three time-delays around the LISA triangle. Specifically, we list several sets of generators for the module whose linear combinations with polynomial coefficients generate the entire module. We find that this formalism can also be extended in a straight forward way to cancel Doppler shifts due to optical bench motions. The two modules are infact isomorphic. We use our formalism to obtain the transfer functions for the six beams and for the generators. We specifically investigate monochromatic gravitational wave sources in the LISA band and carry out the maximisiation over linear combinations of the generators of the signal-to-noise ratios with the frequency and source direction angles as parameters.Comment: 27 Pages, 6 figure

    Gauged Gravity via Spectral Asymptotics of non-Laplace type Operators

    Full text link
    We construct invariant differential operators acting on sections of vector bundles of densities over a smooth manifold without using a Riemannian metric. The spectral invariants of such operators are invariant under both the diffeomorphisms and the gauge transformations and can be used to induce a new theory of gravitation. It can be viewed as a matrix generalization of Einstein general relativity that reproduces the standard Einstein theory in the weak deformation limit. Relations with various mathematical constructions such as Finsler geometry and Hodge-de Rham theory are discussed.Comment: Version accepted by J. High Energy Phys. Introduction and Discussion significantly expanded. References added and updated. (41 pages, LaTeX: JHEP3 class, no figures

    Forward Modeling of Space-borne Gravitational Wave Detectors

    Full text link
    Planning is underway for several space-borne gravitational wave observatories to be built in the next ten to twenty years. Realistic and efficient forward modeling will play a key role in the design and operation of these observatories. Space-borne interferometric gravitational wave detectors operate very differently from their ground based counterparts. Complex orbital motion, virtual interferometry, and finite size effects complicate the description of space-based systems, while nonlinear control systems complicate the description of ground based systems. Here we explore the forward modeling of space-based gravitational wave detectors and introduce an adiabatic approximation to the detector response that significantly extends the range of the standard low frequency approximation. The adiabatic approximation will aid in the development of data analysis techniques, and improve the modeling of astrophysical parameter extraction.Comment: 14 Pages, 14 Figures, RevTex

    Optimal filtering of the LISA data

    Get PDF
    The LISA time-delay-interferometry responses to a gravitational-wave signal are rewritten in a form that accounts for the motion of the LISA constellation around the Sun; the responses are given in closed analytic forms valid for any frequency in the band accessible to LISA. We then present a complete procedure, based on the principle of maximum likelihood, to search for stellar-mass binary systems in the LISA data. We define the required optimal filters, the amplitude-maximized detection statistic (analogous to the F statistic used in pulsar searches with ground-based interferometers), and discuss the false-alarm and detection probabilities. We test the procedure in numerical simulations of gravitational-wave detection.Comment: RevTeX4, 28 pages, 9 EPS figures. Minus signs fixed in Eq. (46) and Table II. Corrected discussion of F-statistic distribution in Sec. IV

    Relativistic Heavy--Ion Collisions in the Dynamical String--Parton Model

    Get PDF
    We develop and extend the dynamical string parton model. This model, which is based on the salient features of QCD, uses classical Nambu-Got\=o strings with the endpoints identified as partons, an invariant string breaking model of the hadronization process, and interactions described as quark-quark interactions. In this work, the original model is extended to include a phenomenological quantization of the mass of the strings, an analytical technique for treating the incident nucleons as a distribution of string configurations determined by the experimentally measured structure function, the inclusion of the gluonic content of the nucleon through the introduction of purely gluonic strings, and the use of a hard parton-parton interaction taken from perturbative QCD combined with a phenomenological soft interaction. The limited number of parameters in the model are adjusted to e+e−e^+e^- and pp --pp data. Utilizing these parameters, the first calculations of the model for pp --AA and AA--AA collisions are presented and found to be in reasonable agreement with a broad set of data.Comment: 26 pages of text with 23 Postscript figures placed in tex

    Size Doesn't Matter: Towards a More Inclusive Philosophy of Biology

    Get PDF
    notes: As the primary author, O’Malley drafted the paper, and gathered and analysed data (scientific papers and talks). Conceptual analysis was conducted by both authors.publication-status: Publishedtypes: ArticlePhilosophers of biology, along with everyone else, generally perceive life to fall into two broad categories, the microbes and macrobes, and then pay most of their attention to the latter. ‘Macrobe’ is the word we propose for larger life forms, and we use it as part of an argument for microbial equality. We suggest that taking more notice of microbes – the dominant life form on the planet, both now and throughout evolutionary history – will transform some of the philosophy of biology’s standard ideas on ontology, evolution, taxonomy and biodiversity. We set out a number of recent developments in microbiology – including biofilm formation, chemotaxis, quorum sensing and gene transfer – that highlight microbial capacities for cooperation and communication and break down conventional thinking that microbes are solely or primarily single-celled organisms. These insights also bring new perspectives to the levels of selection debate, as well as to discussions of the evolution and nature of multicellularity, and to neo-Darwinian understandings of evolutionary mechanisms. We show how these revisions lead to further complications for microbial classification and the philosophies of systematics and biodiversity. Incorporating microbial insights into the philosophy of biology will challenge many of its assumptions, but also give greater scope and depth to its investigations

    Multi-ancestry GWAS of the electrocardiographic PR interval identifies 202 loci underlying cardiac conduction

    Get PDF
    The electrocardiographic PR interval reflects atrioventricular conduction, and is associated with conduction abnormalities, pacemaker implantation, atrial fibrillation (AF), and cardiovascular mortality. Here we report a multi-ancestry (N = 293,051) genome-wide association meta-analysis for the PR interval, discovering 202 loci of which 141 have not previously been reported. Variants at identified loci increase the percentage of heritability explained, from 33.5% to 62.6%. We observe enrichment for cardiac muscle developmental/contractile and cytoskeletal genes, highlighting key regulation processes for atrioventricular conduction. Additionally, 8 loci not previously reported harbor genes underlying inherited arrhythmic syndromes and/or cardiomyopathies suggesting a role for these genes in cardiovascular pathology in the general population. We show that polygenic predisposition to PR interval duration is an endophenotype for cardiovascular disease, including distal conduction disease, AF, and atrioventricular pre-excitation. These findings advance our understanding of the polygenic basis of cardiac conduction, and the genetic relationship between PR interval duration and cardiovascular disease

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2,3,4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease
    • …
    corecore