1,122 research outputs found

    Functional biases in GRB's spectral parameter correlations

    Full text link
    Gamma Ray Bursts (GRBs) show evidence of different spectral shapes, light curves, duration, host galaxies and they explode within a wide redshift range. However, the most of them seems to follow very tight correlations among some observed quantities relating to their energetic. If true, these correlations have significant implications on burst physics, giving constraints on theoretical models. Moreover, several suggestions have been made to use these correlations in order to calibrate GRBs as standard candles and to constrain the cosmological parameters. We investigate the cosmological relation between low energy α\alpha index in GRBs prompt spectra and the redshift zz. We present a statistical analysis of the relation between the total isotropic energy EisoE_{iso} and the peak energy EpE_p (also known as Amati relation) in GRBs spectra searching for possible functional biases. Possible implications on the EisoE_{iso} vs EpE_p relation of the α\alpha vs (1+z)(1+z) correlation are evaluated. We used MonteCarlo simulations and the boostrap method to evaluate how large are the effects of functional biases on the EisoE_{iso} vs EpE_p. We show that high values of the linear correlation coefficent, up to about 0.8, in the EisoE_{iso} vs EpE_p relation are obtained for random generated samples of GRBs, confirming the relevance of functional biases. Astrophysical consequences from EisoE_{iso} vs EpE_p relation are then to be revised after a more accurate and possibly bias free analysis.Comment: 6 pages, 6 figures, conference poster session: "070228: The Next Decade of Gamma-Ray Burst Afterglows", Amsterdam, March 2007, MNRAS submitte

    Analysis of the Spectral Energy Distributions of Fermi bright blazars

    Full text link
    Blazars are a small fraction of all extragalactic sources but, unlike other objects, they are strong emitters across the entire electromagnetic spectrum. In this study we have conducted a detailed investigation of the broad-band spectral properties of the gamma-ray selected blazars of the Fermi-LAT Bright AGN Sample (LBAS). By combining the accurately estimated Fermi gamma-ray spectra with Swift, radio, NIR-Optical and hard-X/gamma-ray data, collected within three months of the LBAS data taking period, we were able to assemble high-quality and quasi-simultaneous Spectral Energy Distributions (SED) for 48 LBAS blazars.Comment: 6 pages, 8 figures, "2009 Fermi Symposium", "eConf Proceedings C091122

    Swift and Fermi observations of X-ray flares: the case of Late Internal Shock

    Get PDF
    Simultaneous Swift and Fermi observations of gamma-ray bursts (GRBs) offer a unique broadband view of their afterglow emission, spanning more than ten decades in energy. We present the sample of X-ray flares observed by both Swift and Fermi during the first three years of Fermi operations. While bright in the X-ray band, X-ray flares are often undetected at lower (optical), and higher (MeV to GeV) energies. We show that this disfavors synchrotron self-Compton processes as origin of the observed X-ray emission. We compare the broadband properties of X-ray flares with the standard late internal shock model, and find that, in this scenario, X-ray flares can be produced by a late-time relativistic (Gamma>50) outflow at radii R~10^13-10^14 cm. This conclusion holds only if the variability timescale is significantly shorter than the observed flare duration, and implies that X-ray flares can directly probe the activity of the GRB central engine.Comment: 13 pages, 4 figures, accepted for publication in Ap

    Blazar surveys with WMAP and Swift

    Get PDF
    We present the preliminary results from two new surveys of blazars that have direct implications on the GLAST detection of extragalactic sources from two different perspectives: microwave selection and a combined deep X-ray/radio selection. The first one is a 41 GHz flux-limited sample extracted from the WMAP 3-yr catalog of microwave point sources. This is a statistically well defined sample of about 200 blazars and radio galaxies, most of which are expected to be detected by GLAST. The second one is a new deep survey of Blazars selected among the radio sources that are spatially coincident with serendipitous sources detected in deep X-ray images (0.3-10 keV) centered on the Gamma Ray Bursts (GRB) discovered by the Swift satellite. This sample is particularly interesting from a statistical viewpoint since a) it is unbiased as GRBs explode at random positions in the sky, b) it is very deep in the X-ray band (\fx \simgt 101510^{-15} \ergs) with a position accuracy of a few arc-seconds, c) it will cover a fairly large (20-30 square deg.) area of sky, d) it includes all blazars with radio flux (1.4 GHz) larger than 10 mJy, making it approximately two orders of magnitude deeper than the WMAP sample and about one order of magnitude deeper than the deepest existing complete samples of radio selected blazars, and e) it can be used to estimate the amount of unresolved GLAST high latitude gamma-ray background and its anisotropy spectrum.Comment: 3 pages, 3 figures, to appear in Proc. of the 1st GLAST Symposium, Feb 5-8, 2007, Stanford, AIP, Eds. S. Ritz, P. F. Michelson, and C. Meega

    Systematic search for gamma-ray periodicity in active galactic nuclei detected by the Fermi Large Area Telescope

    Get PDF
    We use nine years of gamma-ray data provided by the Fermi Large Area Telescope (LAT) to systematically study the light curves of more than two thousand active galactic nuclei (AGN) included in recent Fermi-LAT catalogs. Ten different techniques are used, which are organized in an automatic periodicity-search pipeline, in order to search for evidence of periodic emission in gamma rays. Understanding the processes behind this puzzling phenomenon will provide a better view about the astrophysical nature of these extragalactic sources. However, the observation of temporal patterns in gamma-ray light curves of AGN is still challenging. Despite the fact that there have been efforts on characterizing the temporal emission of some individual sources, a systematic search for periodicities by means of a full likelihood analysis applied to large samples of sources was missing. Our analysis finds 11 AGN, of which 9 are identified for the first time, showing periodicity at more than 4sigma in at least four algorithms. These findings will help in solving questions related to the astrophysical origin of this periodic behavior.Comment: 16 pages, 5 figures, 4 tables. Accepted by Ap

    The puzzling temporally variable optical and X-ray afterglow of GRB 101024A

    Full text link
    Aim: To present the optical observations of the afterglow of GRB 101024A and to try to reconcile these observations with the X-ray afterglow data of GRB 101024A using current afterglow models Method: We employ early optical observations using the Zadko Telescope combined with X-ray data and compare with the reverse shock/forward shock model. Results: The early optical light curve reveals a very unusual steep decay index of alpha~5. This is followed by a flattening and possibly a plateau phase coincident with a similar feature in the X-ray. We discuss these observations in the framework of the standard reverse shock/forward shock model and energy injection.We note that the plateau phase might also be the signature of the formation of a new magnetar.Comment: 5 pages, 2 figures. Accepted for publication in Astronomy and Astrophysic

    Unusual Flaring Activity in the Blazar PKS 1424-418 during 2008-2011

    Full text link
    Context. Blazars are a subset of active galactic nuclei (AGN) with jets that are oriented along our line of sight. Variability and spectral energy distribution (SED) studies are crucial tools for understanding the physical processes responsible for observed AGN emission. Aims. We report peculiar behaviour in the bright gamma-ray blazar PKS 1424-418 and use its strong variability to reveal information about the particle acceleration and interactions in the jet. Methods. Correlation analysis of the extensive optical coverage by the ATOM telescope and nearly continuous gamma-ray coverage by the Fermi Large Area Telescope is combined with broadband, time-dependent modeling of the SED incorporating supplemental information from radio and X-ray observations of this blazar. Results. We analyse in detail four bright phases at optical-GeV energies. These flares of PKS 1424-418 show high correlation between these energy ranges, with the exception of one large optical flare that coincides with relatively low gamma-ray activity. Although the optical/gamma-ray behaviour of PKS 1424-418 shows variety, the multiwavelength modeling indicates that these differences can largely be explained by changes in the flux and energy spectrum of the electrons in the jet that are radiating. We find that for all flares the SED is adequately represented by a leptonic model that includes inverse Compton emission from external radiation fields with similar parameters. Conclusions. Detailed studies of individual blazars like PKS 1424-418 during periods of enhanced activity in different wavebands are helping us identify underlying patterns in the physical parameters in this class of AGN.Comment: accepted for publication in A&
    corecore