194 research outputs found
Explaining individual variation in patterns of mass loss in breeding birds.
RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are.BACKGROUND: Studies of birds have a disproportionate representation in the literature on life-history evolution, because of the (apparent) ease with which the costs and benefits can be quantified and manipulated. During reproduction, birds frequently show a highly conserved pattern of mass change and changes in mass loss during breeding have been widely considered to be a valid short-term measure of the costs of reproduction. Experimental manipulations of the breeding attempts of birds usually argue that the presence of a response shows that a cost of reproduction exists, but there is little consensus as to how the size of these costs can be measured. RESULTS: We model this mass loss by considering how a parent can maximise its lifetime reproductive success, using a theoretical framework that is particularly suited to modelling parental care in altricial birds. If lifetime reproductive success is taken to be the sum of a parent's current and future reproductive success, we show that the exact forms of these components will influence the optimal amount of mass a parent should lose. In particular, we demonstrate that the shape of the relationship between parental investment and chick survival will lead to differing degrees of investment between parents of different initial qualities: parents with initially high levels of energy reserves could conceivably invested a lesser, similar or greater amount of resources than parents with initially low reserves, and these initially 'heavy' parents could potentially end up being lighter than the initially 'lighter' individuals. CONCLUSION: We argue that it is difficult to make predictions about the dependence of a parent's final mass on its initial mass, and therefore mass loss should only be used as a short-term measure of the costs of reproduction with caution. The model demonstrates that we require a better understanding of the relationship between mass loss and both current and future reproductive success of the parent, before predictions about mass loss can be made and tested. We discuss steps that could be taken to increase the accuracy of our predictions
Gray plumage color is more cryptic than brown in snowy landscapes in a resident color polymorphic bird
Camouflage may promote fitness of given phenotypes in different environments. The tawny owl (Strix aluco) is a color polymorphic species with a gray and brown morph resident in the Western Palearctic. A strong selection pressure against the brown morph during snowy and cold winters has been documented earlier, but the selection mechanisms remain unresolved. Here, we hypothesize that selection favors the gray morph because it is better camouflaged against predators and mobbers in snowy conditions compared to the brown one. We conducted an online citizen science experiment where volunteers were asked to locate a gray or a brown tawny owl specimen from pictures taken in snowy and snowless landscapes. Our results show that the gray morph in snowy landscapes is the hardest to detect whereas the brown morph in snowy landscapes is the easiest to detect. With an avian vision model, we show that, similar to human perceivers, the brown morph is more conspicuous than the gray against coniferous tree trunks for a mobbing passerine. We suggest that with better camouflage, the gray morph may avoid mobbers and predators more efficiently than the brown morph and thus survive better in snowy environments. As winters are getting milder and shorter in the species range, the selection periods against brown coloration may eventually disappear or shift poleward.Peer reviewe
Pattern contrast influences wariness in naïve predators towards aposematic patterns
An apparent and common feature of aposematic patterns is that they contain a high level of achromatic (luminance) contrast, for example, many warning signals combine black spots and stripes with a lighter colour such as yellow. However, the potential importance of achromatic contrast, as distinct from colour contrast, in reducing predation has been largely overlooked. Here, using domestic chicks as a model predator, we manipulated the degree of achromatic contrast in warning patterns to test if high luminance contrast in aposematic signals is important for deterring naïve predators. We found that the chicks were less likely to approach and eat prey with high contrast compared to low contrast patterns. These findings suggest that aposematic prey patterns with a high luminance contrast can benefit from increased survival through eliciting unlearned biases in naïve avian predators. Our work also highlights the importance of considering luminance contrast in future work investigating why aposematic patterns take the particular forms that they do.</p
A computational neuroscience framework for quantifying warning signals
Animal warning signals show remarkable diversity, yet subjectively appear to share certain visual features that make defended prey stand out and look different from more cryptic palatable species. For example, many (but far from all) warning signals involve high contrast elements, such as stripes and spots, and often involve the colours yellow and red. How exactly do aposematic species differ from non‐aposematic ones in the eyes (and brains) of their predators? Here, we develop a novel computational modelling approach, to quantify prey warning signals and establish what visual features they share. First, we develop a model visual system, made of artificial neurons with realistic receptive fields, to provide a quantitative estimate of the neural activity in the first stages of the visual system of a predator in response to a pattern. The system can be tailored to specific species. Second, we build a novel model that defines a ‘neural signature’, comprising quantitative metrics that measure the strength of stimulation of the population of neurons in response to patterns. This framework allows us to test how individual patterns stimulate the model predator visual system. For the predator–prey system of birds foraging on lepidopteran prey, we compared the strength of stimulation of a modelled avian visual system in response to a novel database of hyperspectral images of aposematic and undefended butterflies and moths. Warning signals generate significantly stronger activity in the model visual system, setting them apart from the patterns of undefended species. The activity was also very different from that seen in response to natural scenes. Therefore, to their predators, lepidopteran warning patterns are distinct from their non‐defended counterparts and stand out against a range of natural backgrounds. For the first time, we present an objective and quantitative definition of warning signals based on how the pattern generates population activity in a neural model of the brain of the receiver. This opens new perspectives for understanding and testing how warning signals have evolved, and, more generally, how sensory systems constrain signal design
Experimental tests of a seasonally changing visual preference for habitat in a long-distance migratory shorebird
Migratory shorebirds show highly organized seasonal cycles in physiological and morphological traits (body mass and composition, plumage, hormone levels, etc.), which in captivity is accompanied by restless behaviour at times when free-living birds would start migration. We introduce the idea that seasonally changing preference for habitat could motivate migrants to embark on migration and that this cognitive process could also guide them to seasonally appropriate places. We explored this by testing whether red knots (Calidris canutus), which also in captivity maintain marked circannual phenotypic rhythms, show evidence of seasonal change in preference for pictures of seasonally appropriate habitats. We first developed a method to verify whether red knots are able to memorize and discriminate contrasting pictures projected by LCD projectors. This was followed by two different experiments in which we tested for a seasonally changing preference for breeding or non-breeding habitat. When carried out during the pre-breeding season, the red knots are expected to prefer pictures of mudflats, their non-breeding habitat. At the start of the breeding season, they should prefer pictures of the tundra breeding habitat. We established that knots are able to distinguish and memorize projected images. We failed to demonstrate the predicted change in vision-based habitat preference, but for reasons of test design we do not interpret this as a strong rejection of the hypothesis. Instead, we suggest that experiments with greater numbers of individuals tested once, perhaps in combination with the provision of additional cues such as smells and sounds, will help the development of these ideas further
Conspicuous male coloration impairs survival against avian predators in Aegean wall lizards, Podarcis erhardii.
This is the final version of the article. It first appeared from Wiley via http://dx.doi.org/10.1002/ece3.1650Animal coloration is strikingly diverse in nature. Within-species color variation can arise through local adaptation for camouflage, sexual dimorphism and conspicuous sexual signals, which often have conflicting effects on survival. Here, we tested whether color variation between two island populations of Aegean wall lizards (Podarcis erhardii) is due to sexual dimorphism and differential survival of individuals varying in appearance. On both islands, we measured attack rates by wild avian predators on clay models matching the coloration of real male and female P. erhardii from each island population, modeled to avian predator vision. Avian predator attack rates differed among model treatments, although only on one island. Male-colored models, which were more conspicuous against their experimental backgrounds to avian predators, were accordingly detected and attacked more frequently by birds than less conspicuous female-colored models. This suggests that female coloration has evolved primarily under selection for camouflage, whereas sexually competing males exhibit costly conspicuous coloration. Unexpectedly, there was no difference in avian attack frequency between local and non-local model types. This may have arisen if the models did not resemble lizard coloration with sufficient precision, or if real lizards behaviorally choose backgrounds that improve camouflage. Overall, these results show that sexually dimorphic coloration can affect the risk of predator attacks, indicating that color variation within a species can be caused by interactions between natural and sexual selection. However, more work is needed to determine how these findings depend on the island environment that each population inhabits.This work was supported by a Biotechnology and Biological Sciences Research Council studentship, Magdalene College, Cambridge and the British Herpetological Society (K.L.A.M), and a Biotechnology and Biological Sciences Research Council and David Philips Research Fellowship (grant number BB/G022887/1) to M.S
Survey of the quality of experimental design, statistical analysis and reporting of research using animals
For scientific, ethical and economic reasons, experiments involving animals should be appropriately designed, correctly analysed and transparently reported. This increases the scientific validity of the results, and maximises the knowledge gained from each experiment. A minimum amount of relevant information must be included in scientific publications to ensure that the methods and results of a study can be reviewed, analysed and repeated. Omitting essential information can raise scientific and ethical concerns. We report the findings of a systematic survey of reporting, experimental design and statistical analysis in published biomedical research using laboratory animals. Medline and EMBASE were searched for studies reporting research on live rats, mice and non-human primates carried out in UK and US publicly funded research establishments. Detailed information was collected from 271 publications, about the objective or hypothesis of the study, the number, sex, age and/or weight of animals used, and experimental and statistical methods. Only 59% of the studies stated the hypothesis or objective of the study and the number and characteristics of the animals used. Appropriate and efficient experimental design is a critical component of high-quality science. Most of the papers surveyed did not use randomisation (87%) or blinding (86%), to reduce bias in animal selection and outcome assessment. Only 70% of the publications that used statistical methods described their methods and presented the results with a measure of error or variability. This survey has identified a number of issues that need to be addressed in order to improve experimental design and reporting in publications describing research using animals. Scientific publication is a powerful and important source of information; the authors of scientific publications therefore have a responsibility to describe their methods and results comprehensively, accurately and transparently, and peer reviewers and journal editors share the responsibility to ensure that published studies fulfil these criteria
Improving Bioscience Research Reporting: The ARRIVE Guidelines for Reporting Animal Research
In the last decade the number of bioscience journals has increased enormously, with many filling specialised niches reflecting new disciplines and technologies. The emergence of open-access journals has revolutionised the publication process, maximising the availability of research data. Nevertheless, a wealth of evidence shows that across many areas, the reporting of biomedical research is often inadequate, leading to the view that even if the science is sound, in many cases the publications themselves are not "fit for purpose", meaning that incomplete reporting of relevant information effectively renders many publications of limited value as instruments to inform policy or clinical and scientific practice [1-21]. A recent review of clinical research showed that there is considerable cumulative waste of financial resources at all stages of the research process, including as a result of publications that are unusable due to poor reporting [22]. It is unlikely that this issue is confined to clinical research [2-14,16-20]. © 2014 by the authors; licensee MDPI, Basel, Switzerland
The density-matrix renormalization group
The density-matrix renormalization group (DMRG) is a numerical algorithm for
the efficient truncation of the Hilbert space of low-dimensional strongly
correlated quantum systems based on a rather general decimation prescription.
This algorithm has achieved unprecedented precision in the description of
one-dimensional quantum systems. It has therefore quickly acquired the status
of method of choice for numerical studies of one-dimensional quantum systems.
Its applications to the calculation of static, dynamic and thermodynamic
quantities in such systems are reviewed. The potential of DMRG applications in
the fields of two-dimensional quantum systems, quantum chemistry,
three-dimensional small grains, nuclear physics, equilibrium and
non-equilibrium statistical physics, and time-dependent phenomena is discussed.
This review also considers the theoretical foundations of the method, examining
its relationship to matrix-product states and the quantum information content
of the density matrices generated by DMRG.Comment: accepted by Rev. Mod. Phys. in July 2004; scheduled to appear in the
January 2005 issu
- …