6,621 research outputs found

    Performance of the EUDET-type beam telescopes

    Full text link
    Test beam measurements at the test beam facilities of DESY have been conducted to characterise the performance of the EUDET-type beam telescopes originally developed within the EUDET project. The beam telescopes are equipped with six sensor planes using MIMOSA26 monolithic active pixel devices. A programmable Trigger Logic Unit provides trigger logic and time stamp information on particle passage. Both data acquisition framework and offline reconstruction software packages are available. User devices are easily integrable into the data acquisition framework via predefined interfaces. The biased residual distribution is studied as a function of the beam energy, plane spacing and sensor threshold. Its standard deviation at the two centre pixel planes using all six planes for tracking in a 6\,GeV electron/positron-beam is measured to be (2.88\,\pm\,0.08)\,\upmu\meter.Iterative track fits using the formalism of General Broken Lines are performed to estimate the intrinsic resolution of the individual pixel planes. The mean intrinsic resolution over the six sensors used is found to be (3.24\,\pm\,0.09)\,\upmu\meter.With a 5\,GeV electron/positron beam, the track resolution halfway between the two inner pixel planes using an equidistant plane spacing of 20\,mm is estimated to (1.83\,\pm\,0.03)\,\upmu\meter assuming the measured intrinsic resolution. Towards lower beam energies the track resolution deteriorates due to increasing multiple scattering. Threshold studies show an optimal working point of the MIMOSA26 sensors at a sensor threshold of between five and six times their RMS noise. Measurements at different plane spacings are used to calibrate the amount of multiple scattering in the material traversed and allow for corrections to the predicted angular scattering for electron beams

    Evolution of the Cerebellar Cortex: The Selective Expansion of Prefrontal-Projecting Cerebellar Lobules

    Get PDF
    It has been suggested that interconnected brain areas evolve in tandem because evolutionary pressures act on complete functional systems rather than on individual brain areas. The cerebellar cortex has reciprocal connections with both the prefrontal cortex and motor cortex, forming independent loops with each. Specifically, in capuchin monkeys cerebellar cortical lobules Crus I and Crus II connect with prefrontal cortex, whereas the primary motor cortex connects with cerebellar lobules V, VI, VIIb, and VIIIa. Comparisons of extant primate species suggest that the prefrontal cortex has expanded more than cortical motor areas in human evolution. Given the enlargement of the prefrontal cortex relative to motor cortex in humans, our hypothesis would predict corresponding volumetric increases in the parts of the cerebellum connected to the prefrontal cortex, relative to cerebellar lobules connected to the motor cortex. We tested the hypothesis by comparing the volumes of cerebellar lobules in structural MRI scans in capuchins, chimpanzees and humans. The fractions of cerebellar volume occupied by Crus I and Crus II were significantly larger in humans compared to chimpanzees and capuchins. Our results therefore support the hypothesis that in the cortico-cerebellar system, functionally related structures evolve in concert with each other. The evolutionary expansion of these prefrontal-projecting cerebellar territories might contribute to the evolution of the higher cognitive functions of humans

    The AIDA-2020 TLU:a flexible trigger logic unit for test beam facilities

    Get PDF
    The AIDA-2020 Trigger Logic Unit (TLU) has been designed to be a flexible and easily configurable unit to provide trigger and control signals to devices employed during test beams, integrating them with the beam telescope. The most recent iteration of the TLU (v1E) has been re-designed within the AIDA-2020 project to integrate with hardware used in beam facilities. Configuration and communication with the TLU are performed over Ethernet. It can be employed as a stand-alone unit or be deployed as part of the EUDAQ2 data acquisition framework, which allows it to connect to a wide range of LHC readout systems. The TLU can operate with a sustained particle rate of 1 MHz and with instantaneous rates up to 20 MHz. In the current firmware iteration, the unit can time-stamp incoming signals with a resolution of 1.5 ns. The hardware, firmware and software designs of the TLU are freely accessible and benefit from constant inputs and upgrades from experienced users. TLU units have already been deployed successfully in beam lines at CERN and DESY

    An evaluation of four crop : weed competition models using a common data set

    Get PDF
    To date, several crop : weed competition models have been developed. Developers of the various models were invited to compare model performance using a common data set. The data set consisted of wheat and Lolium rigidum grown in monoculture and mixtures under dryland and irrigated conditions. Results from four crop : weed competition models are presented: ALMANAC, APSIM, CROPSIM and INTERCOM. For all models, deviations between observed and predicted values for monoculture wheat were only slightly lower than for wheat grown in competition with L. rigidum, even though the workshop participants had access to monoculture data while parameterizing models. Much of the error in simulating competition outcome was associated with difficulties in accurately simulating growth of individual species. Relatively simple competition algorithms were capable of accounting for the majority of the competition response. Increasing model complexity did not appear to dramatically improve model accuracy. Comparison of specific competition processes, such as radiation interception, was very difficult since the effects of these processes within each model could not be isolated. Algorithms for competition processes need to be modularized in such a way that exchange, evaluation and comparison across models is facilitated

    An evaluation of four crop : weed competition models using a common data set

    Get PDF
    To date, several crop : weed competition models have been developed. Developers of the various models were invited to compare model performance using a common data set. The data set consisted of wheat and Lolium rigidum grown in monoculture and mixtures under dryland and irrigated conditions. Results from four crop : weed competition models are presented: ALMANAC, APSIM, CROPSIM and INTERCOM. For all models, deviations between observed and predicted values for monoculture wheat were only slightly lower than for wheat grown in competition with L. rigidum, even though the workshop participants had access to monoculture data while parameterizing models. Much of the error in simulating competition outcome was associated with difficulties in accurately simulating growth of individual species. Relatively simple competition algorithms were capable of accounting for the majority of the competition response. Increasing model complexity did not appear to dramatically improve model accuracy. Comparison of specific competition processes, such as radiation interception, was very difficult since the effects of these processes within each model could not be isolated. Algorithms for competition processes need to be modularized in such a way that exchange, evaluation and comparison across models is facilitated

    Radiation hardness qualification of PbWO4 scintillation crystals for the CMS Electromagnetic Calorimeter

    Get PDF
    This is the Pre-print version of the Article. The official published version can be accessed from the link below - Copyright @ 2010 IOPEnsuring the radiation hardness of PbWO4 crystals was one of the main priorities during the construction of the electromagnetic calorimeter of the CMS experiment at CERN. The production on an industrial scale of radiation hard crystals and their certification over a period of several years represented a difficult challenge both for CMS and for the crystal suppliers. The present article reviews the related scientific and technological problems encountered

    Infrastructure for Detector Research and Development towards the International Linear Collider

    Full text link
    The EUDET-project was launched to create an infrastructure for developing and testing new and advanced detector technologies to be used at a future linear collider. The aim was to make possible experimentation and analysis of data for institutes, which otherwise could not be realized due to lack of resources. The infrastructure comprised an analysis and software network, and instrumentation infrastructures for tracking detectors as well as for calorimetry.Comment: 54 pages, 48 picture

    Test-beam and laboratory characterisation of the TORCH prototype detector

    Get PDF
    The TORCH time-of-flight (TOF) detector is being developed to provide particle identification up to a momentum of 10 GeV/c over a flight distance of 10 m. It has a DIRC-like construction with View the MathML source10mm thick synthetic amorphous fused-silica plates as a Cherenkov radiator. Photons propagate by total internal reflection to the plate periphery where they are focused onto an array of customised position-sensitive micro-channel plate (MCP) detectors. The goal is to achieve a 15 ps time-of-flight resolution per incident particle by combining arrival times from multiple photons. The MCPs have pixels of effective size 0.4 mm×6.6 mm2 in the vertical and horizontal directions, respectively, by incorporating a novel charge-sharing technique to improve the spatial resolution to better than the pitch of the readout anodes. Prototype photon detectors and readout electronics have been tested and calibrated in the laboratory. Preliminary results from testbeam measurements of a prototype TORCH detector are also presented
    corecore