479 research outputs found
Exact relativistic models of thin disks around static black holes in a magnetic field
The exact superposition of a central static black hole with surrounding thin
disk in presence of a magnetic field is investigated. We consider two models of
disk, one of infinite extension based on a Kuzmin-Chazy-Curzon metric and other
finite based on the first Morgan-Morgan disk. We also analyze a simple model of
active galactic nuclei consisting of black hole, a Kuzmin-Chazy-Curzon disk and
two rods representing jets, in presence of magnetic field. To explain the
stability of the disks we consider the matter of the disk made of two
pressureless streams of counterrotating charged particles (counterrotating
model) moving along electrogeodesic. Using the Rayleigh criterion we derivate
for circular orbits the stability conditions of the particles of the streams.
The influence of the magnetic field on the matter properties of the disk and on
its stability are also analyzed.Comment: 17 pages, 14 figures. arXiv admin note: text overlap with
arXiv:gr-qc/0409109 by other author
Aichelburg-Sexl boost of an isolated source in general relativity
A study of the Aichelburg--Sexl boost of the Schwarzschild field is described
in which the emphasis is placed on the field (curvature tensor) with the metric
playing a secondary role. This is motivated by a description of the Coulomb
field of a charged particle viewed by an observer whose speed relative to the
charge approaches the speed of light. Our approach is exemplified by carrying
out an Aichelburg-- Sexl type boost on the Weyl vacuum gravitational field due
to an isolated axially symmetric source. Detailed calculations of the boosts
transverse and parallel to the symmetry axis are given and the results, which
differ significantly, are discussed.Comment: 25 pages, LateX2
Comment on "Superconducting gap anisotropy vs. doping level in high-T_c cuprates" by C. Kendziora et al, PRL 77, 727 (1996)
In a recent paper Kendziora et al concluded that the superconducting gap in
overdoped Bi-2212 is isotropic. From data obtained from electronic Raman
scattering measurements, their conclusion was based on the observation that
pair breaking peaks occured at approximately the same frequency in different
scattering geometries and that the normalized scattering intensity at low
energies was strongly depleted. We discuss a different interpretation of the
raw data and present new data which is consistent with a strongly anisotropic
gap with nodes. The spectra can be successfully described by a model for Raman
scattering in a d_{x^{2}-y^{2}} superconductor with spin fluctuations and
impurity scattering included.Comment: 1 page revtex plus 1 postscript figur
Teleparallel Energy-Momentum Distribution of Static Axially Symmetric Spacetimes
This paper is devoted to discuss the energy-momentum for static axially
symmetric spacetimes in the framework of teleparallel theory of gravity. For
this purpose, we use the teleparallel versions of Einstein, Landau-Lifshitz,
Bergmann and Mller prescriptions. A comparison of the results shows
that the energy density is different but the momentum turns out to be constant
in each prescription. This is exactly similar to the results available in
literature using the framework of General Relativity. It is mentioned here that
Mller energy-momentum distribution is independent of the coupling
constant . Finally, we calculate energy-momentum distribution for the
Curzon metric, a special case of the above mentioned spacetime.Comment: 14 pages, accepted for publication in Mod. Phys. Lett.
Relativistic Static Thin Disks with Radial Stress Suport
New solutions for static non-rotating thin disks of finite radius with
nonzero radial stress are studied. A method to introduce either radial pressure
or radial tension is presented. The method is based on the use of conformal
transformations.Comment: 19 pages, LaTeX, 7 figures, submitted to Class. Quan. Gra
Performance of discrete heat engines and heat pumps in finite time
The performance in finite time of a discrete heat engine with internal
friction is analyzed. The working fluid of the engine is composed of an
ensemble of noninteracting two level systems. External work is applied by
changing the external field and thus the internal energy levels. The friction
induces a minimal cycle time. The power output of the engine is optimized with
respect to time allocation between the contact time with the hot and cold baths
as well as the adiabats. The engine's performance is also optimized with
respect to the external fields. By reversing the cycle of operation a heat pump
is constructed. The performance of the engine as a heat pump is also optimized.
By varying the time allocation between the adiabats and the contact time with
the reservoir a universal behavior can be identified. The optimal performance
of the engine when the cold bath is approaching absolute zero is studied. It is
found that the optimal cooling rate converges linearly to zero when the
temperature approaches absolute zero.Comment: 45 pages LaTeX, 25 eps figure
Optimization of the deposition conditions and structural characterization of Y1Ba2Cu3O(7-x) thin superconducting films
Two series of Y1Ba2Cu3O(z) thin films deposited on (001) LaAl03 single crystals by excimer laser ablation under two different protocols have been investigated. The research has yielded well defined deposition conditions in terms of oxygen partial pressure p(O2) and substrate temperature of the deposition process Th, for the growth of high quality epitaxial films of YBCO. The films grown under conditions close to optimal for both j(sub c) and T(sub c) exhibited T(sub c) greater than or equal to 91 K and j(sub c) greater than or equal to 4 x 106 A/sq cm, at 77 K. Close correlations between the structural quality of the film, the growth parameters (p(O2), T(sub h)) and j(sub c) and T(sub c) have been found
Brownian Carnot engine
The Carnot cycle imposes a fundamental upper limit to the efficiency of a
macroscopic motor operating between two thermal baths. However, this bound
needs to be reinterpreted at microscopic scales, where molecular bio-motors and
some artificial micro-engines operate. As described by stochastic
thermodynamics, energy transfers in microscopic systems are random and thermal
fluctuations induce transient decreases of entropy, allowing for possible
violations of the Carnot limit. Despite its potential relevance for the
development of a thermodynamics of small systems, an experimental study of
microscopic Carnot engines is still lacking. Here we report on an experimental
realization of a Carnot engine with a single optically trapped Brownian
particle as working substance. We present an exhaustive study of the energetics
of the engine and analyze the fluctuations of the finite-time efficiency,
showing that the Carnot bound can be surpassed for a small number of
non-equilibrium cycles. As its macroscopic counterpart, the energetics of our
Carnot device exhibits basic properties that one would expect to observe in any
microscopic energy transducer operating with baths at different temperatures.
Our results characterize the sources of irreversibility in the engine and the
statistical properties of the efficiency -an insight that could inspire novel
strategies in the design of efficient nano-motors.Comment: 7 pages, 7 figure
Relativistic Static Thin Disks: The Counter-Rotating Model
A detailed study of the Counter-Rotating Model (CRM) for generic finite
static axially symmetric thin disks with nonzero radial pressure is presented.
We find a general constraint over the counter-rotating tangential velocities
needed to cast the surface energy-momentum tensor of the disk as the
superposition of two counter-rotating perfect fluids. We also found expressions
for the energy density and pressure of the counter-rotating fluids. Then we
shown that, in general, there is not possible to take the two counter-rotating
fluids as circulating along geodesics neither take the two counter-rotating
tangential velocities as equal and opposite. An specific example is studied
where we obtain some CRM with well defined counter-rotating tangential
velocities and stable against radial perturbations. The CRM obtained are in
agree with the strong energy condition, but there are regions of the disks with
negative energy density, in violation of the weak energy condition.Comment: 19 pages, 6 figures. Submitted to Physical Review
- …