15 research outputs found

    Use of Objective Outcomes Measures to Verify the Effects of ICF-Based Gait Treatment in Huntington's Disease Patient on Globus Pallidus Deep Brain Stimulation: A Case Report

    Get PDF
    In advanced stages of in Huntington's disease (HD) gait impairments and severe chorea are usually medication-refractory. The long-term effects on gait in HD of physiotherapy ICF-based management post- globus pallidus deep brain stimulation (GPi DBS) are not well-established. Physiotherapy has been recognized as an essential element in HD treatment. Here, we present a case report of a 56-year-old woman with HD on the advanced stage and severe chorea medication-refractory after GPi-DBS. We performed multidisciplinary motor assessments ICF-based to identify the disability at clinical and home-setting, including environmental and personal factors before and after GPi-DBS surgery and at 11-time points follow-up. The surgery was very successful and directly post GPi-DBS, there were a significant improvement in chorea and a substantial decrease in medication dose. A framework ICF- based physiotherapy protocol with external cues was developed to improve gait was delivered post-surgery and was continued three times/week during 18-months. Physiotherapy sessions consisted of a personalized protocol of exercises with functional movements, balance, and gait training with external cues. Improvements in gait were observed in 3-months post-intervention and were more expressive in 6-months follow-up. Our patient improved substantially HD motor symptoms and her quality of life after GPi-DBS intervention and a physiotherapy program ICF-based. The objective outcomes measures used to assess gait have served as endpoints to assessing the patient's motor profile during the pre-operative period. Assessments were helpful to verify the efficacy of the multidisciplinary intervention in long-term.ConclusionPeriodically assessing function and disability using outcome improvements may support clinicians' decisions about DBS, medication adjustments and guide physiotherapists to personalize the ICF-based intervention

    Beneficial nonmotor effects of subthalamic and pallidal neurostimulation in Parkinson’s disease

    Get PDF
    BackgroundSubthalamic (STN) and pallidal (GPi) deep brain stimulation (DBS) improve quality of life, motor, and nonmotor symptoms (NMS) in advanced Parkinson’s disease (PD). However, few studies have compared their nonmotor effects.ObjectiveTo compare nonmotor effects of STN-DBS and GPi-DBS.MethodsIn this prospective, observational, multicenter study including 60 PD patients undergoing bilateral STN-DBS (n = 40) or GPi-DBS (n = 20), we examined PDQuestionnaire (PDQ), NMSScale (NMSS), Unified PD Rating Scale-activities of daily living, -motor impairment, -complications (UPDRS-II, –III, -IV), Hoehn&Yahr, Schwab&England Scale, and levodopa-equivalent daily dose (LEDD) preoperatively and at 6-month follow-up. Intra-group changes at follow-up were analyzed with Wilcoxon signed-rank or paired t-test, if parametric tests were applicable, and corrected for multiple comparisons. Inter-group differences were explored with Mann-Whitney-U/unpaired t-tests. Analyses were performed before and after propensity score matching which balanced out demographic and preoperative clinical characteristics. Strength of clinical changes was assessed with effect size.ResultsIn both groups, PDQ, UPDRS-II, -IV, Schwab&England Scale, and NMSS improved significantly at follow-up. STN-DBS was significantly better for LEDD reduction, GPi-DBS for UPDRS-IV. While NMSS total score outcomes were similar, explorative NMSS domain analyses revealed distinct profiles: Both targets improved sleep/fatigue and mood/cognition, but only STN-DBS the miscellaneous (pain/olfaction) and attention/memory and only GPi-DBS cardiovascular and sexual function domains

    Non-motor effects of deep brain stimulation in Parkinson's disease motor subtypes

    No full text
    Introduction: Deep brain stimulation (DBS) is a well-established treatment for patients with Parkinson's disease (PD) improving quality of life, motor, and non-motor symptoms. However, non-motor effects in PD subtypes are understudied. We hypothesized that patients with 'postural instability and gait difficulty' (PIGD) experience more beneficial non-motor effects than 'tremor-dominant' patients undergoing DBS for PD.Methods: In this prospective, observational, international multicentre study with a 6-month follow-up, we assessed the Non-Motor Symptom Scale (NMSS) as primary and the following secondary outcomes: Unified PD Rating Scale-motor examination (UPDRS-III), Scales for Outcomes in PD (SCOPA)-activities of daily living (ADL) and -motor complications, PDQuestionnaire-8 (PDQ-8), and levodopa-equivalent daily dose (LEDD). We analysed within-group longitudinal changes with Wilcoxon signed-rank test and Benjamini-Hochberg correction for multiple comparisons. Additionally, we explored outcome between-group differences of motor subtypes with Mann-Whitney U-tests.Results: In 82 PIGD and 33 tremor-dominant patients included in this study, baseline NMSS total scores were worse in PIGD patients, both groups experienced postoperative improvements of the NMSS sleep/fatigue domain, and between-group differences in postoperative outcomes were favourable in the PIGD group for the NMSS total and miscellaneous domain scores.Conclusions: This study provides evidence of a favourable outcome of total non-motor burden in PIGD compared to tremor-dominant patients undergoing DBS for PD. These differences of clinical efficacy on non-motor aspects should be considered when advising and monitoring patients with PD undergoing DBS.Keywords: Deep brain stimulation; Nonmotor symptoms; Postural instability and gait difficulty; Quality of life; Tremor-dominant
    corecore